首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phases, microstructure, and magnetic properties of Co80Zr18−xNbxB2 (x=1, 2, 3, and 4) melt-spun ribbons were investigated. The small substitution of Nb for Zr in the Co–Zr–B melt-spun ribbons resulted in the improvement of magnetic properties, especially the coercivity. The main effect of added Nb on the coercovity of Co–Zr–Nb–B melt-spun ribbons, originated from modification of the grain size of Co11Zr2 phase. The coercivity of the Co–Zr–Nb–B melt-spun ribbons depends on the annealing temperature. The optimal magnetic properties of Hc=5.1 kOe, and (BH)max=3.4 MGOe were obtained in the Co80Zr15Nb3B2 melt-spun ribbons annealed at 600 °C for 3 min.  相似文献   

2.
Thin films of samples of the glassy SxSe100−x system with 0 ≤ x ≤ 7.28 have been prepared by thermal evaporation technique at room temperature (300 K). X-ray investigations show that the structure of pure selenium (Se) does change seriously by the addition of small amount of sulphur S ≤7.28%. The lattice parameters were determined as a function of sulphur content. Results of differential thermal analysis (DTA) of the glassy compositions of the system SxSe100−x were discussed. The characteristic temperatures (Tg, Tc and Tm) were evaluated. Dark electrical resistivities, ρ, of SxSe100−x thin films with different thicknesses from 100 to 500 nm, were measured in the temperature range from 300 to 423 K. Two distinct linear parts with different activation energies were observed. The variation of electrical resistivity of examined compositions has been discussed as a function of the film thickness, temperature and the sulphur content. The application of Mott model for the phonon assisted hopping of small polarons gave the same two activation energies obtained from the resistivity temperature calculations.  相似文献   

3.
The spectral and kinetic parameters of M1−xCexF2+x (x=0.35, M=Ca, Sr, Ba) crystals luminescence have been studied. These characteristics are compared to the luminescence of solution base hosts: MF2:Ce and CeF3. The emission bands of heavily Ce-doped alkali earth fluorides are closed to the spectrum of perturbed Ce-center in CeF3 at T=9 K. Luminescence of M0.65Ce0.35F2.35 crystals reveals the efficient excitation in the UV and VUV ranges. The main feature of the emission and excitation spectra of Ce3+ luminescence is the displacement to the low-energy range according to the bandgap decrease in the Ca-, Sr- and Ba-based fluorides, respectively. Small Stokes shift leads to the reabsorption and light yield decrease. Luminescence peculiarities of M1−xCexF2+x solid solution and the role of Ce-enriched inclusions are discussed.  相似文献   

4.
The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. π-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 × 10−3 mol L−1, the limiting molecular area of lecithin increased from 110.5 to 138.5 Å2, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m−1, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 × 106 Ω and 3.573 × 10−8 F to 1.391 × 106 Ω and 3.340 × 10−8 F when the concentration of tryptophan increased from 0 to 2 × 10−3 mol L−1. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.  相似文献   

5.
The nominal composition of Y0.8Ca0.2Ba2−xLaxCu3Oy (YBLCO) cuprates with x≤0.50 has been synthesized by the standard solid state reaction technique. X-ray diffraction and the resistivity measurements are used to characterize the structure and the superconductivity of YBLCO cuprates. There is no structural phase transition in the whole doping range. The dependencies of the lattice constants and some other structural parameters on the content of La for the samples YBLCO with x≤0.20 are different than those for the samples with x≥0.25. The zero resistance temperature Tc0 increases with the increase of the content of La in YBLCO as x≤0.20, and decreases as x≥0.25. We compared these results with those of Nd-doped Y0.8Ca0.2Ba2−zNdzCu3Oy cuprates. It seems that Tc0 is related to the structural parameters due to Ca and La codoping in YBLCO.  相似文献   

6.
Taking the Rayleigh range zR and the M2-factor as the characteristic parameters of beam quality, the beam quality of radial Gaussian Schell-model (GSM) array beams is studied. The analytical expressions for the zR and the M2-factor of radial GSM array beams are derived. It is shown that for the superposition of the cross-spectral density function zR is longer and the M2-factor is lower than that for the superposition of the intensity. For the two types of superposition, zR increases and the M2-factor decreases with increase in beam coherence parameter, and both zR and the M2-factor increase with increase in inverse radial fill-factor. For the superposition of the cross-spectral density function, zR increases and the M2-factor decreases with increase in beam number, while for the superposition of the intensity both the zR and M2-factor are independent of the beam number.  相似文献   

7.
The X3Σ ground state vibration-rotation spectrum of SbH and the near infrared spectra of the b1Σ+-X3Σ transitions of SbH and SbD have been measured at high resolution by Fourier transform spectroscopy. The SbH and SbD radicals were generated in a tube furnace with a D.C. discharge of a flowing mixture of argon, hydrogen (or deuterium), and antimony vapor. In the infrared region, the 1-0 and 2-1 bands of the three components (0+, 1e, and 1f) as well as the 0+ component of the 3-2 band were observed for 121SbH and 123SbH. In the near infrared region, the 0-0, 1-1, and 2-2 bands of the b1Σ+-X3Σ system of both SbH and SbD as well as the 3-3 band of SbD were observed. Except for a few lines, the antimony isotopic shift was not resolved for these electronic spectra. The present data set was combined with the available ground state data on SbD and a1Δ data for SbH and SbD from previous work, and a least-squares fit was performed for each of the four isotopologues: 121SbH, 123SbH, 121SbD, and 123SbD. Improved spectroscopic constants were obtained for the observed vibrational levels of the X3Σ, a1Δ, and b1Σ+ states of these four isotopologues. In addition, all the above data were also fitted simultaneously to a multi-isotopologue Dunham model, which yielded Dunham constants and Born-Oppenheimer breakdown parameters for these three electronic states. Interestingly, we found that Born-Oppenheimer breakdown corrections were also required for some of the spin-spin and spin-rotation parameters of the X3Σ state.  相似文献   

8.
The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-d4 (C2D4) was recorded in the 1017-1137 cm−1 region with an unapodized resolution of 0.0063 cm−1. Upper state (v12 = 1) rovibrational constants consisting of three rotational and five quartic constants were improved by assigning and fitting 2103 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The band centre of the A-type ν12 band is found to be 1076.98480 ± 0.00002 cm−1. The present analysis covering a wider wavenumber range and higher J and Kc values yielded upper state constants including the band centre which are more accurate than previously reported. The rms deviation of the upper state fit is 0.00045 cm−1. Improved ground state rovibrational constants were also determined from the fit of 1247 ground state combination differences (GSCD) from the presently-assigned infrared transitions of the ν12 band of C2D4. The rms deviation of the GSCD fit is 0.00049 cm−1. In the rovibrational analysis, local frequency perturbations were not detected even at high J and Ka values. The calculated inertial defect Δ12 is 0.32551 ± 0.00001 μÅ2. The line intensities of the individual transitions in the ν12 band were measured and the band strength of 39.8 ± 2.0 cm−2 atm−1 was derived for the ν12 band of C2D4.  相似文献   

9.
The characterization and magnetic properties of YFe12−xMox (x=2.0, 2.5 and 3.0) with the ThMn12-type structure, and the magnetocaloric effect of YFe9.5Mo2.5 were investigated. A directional growth was observed in YFe10Mo2 alloy. A broad peak in the zero-field-cooling (ZFC) magnetization curve of the YFe12−xMox compounds is ascribed to the existence of ferromagnetic clusters with different site moments and scattered orientations of the moments. The broad range of the peak is reduced with increasing Mo content. A weak peak is observed near 190 K in the ZFC curve of YFe9Mo3, which is associated with the 8i sites being mostly occupied by Mo atoms. YFe9.5Mo2.5 has a magnetic entropy change of −1.09 J/kg K for a field change of 5 T at 277 K.  相似文献   

10.
In the present paper, an abrupt heterojunction photodetector based on Hg1 − xCdxTe (MCT) has been simulated theoretically for mid-infrared applications. A semi-analytical simulation of the device has been carried out in order to study the performance ratings of the photodetector for operation at room temperature. The energy band diagram, carrier concentration, electric field profile, dark current, resistance–area product, quantum efficiency and detectivity have been calculated and optimized as a function of different parameters such as device thickness, applied reverse voltage and operating wavelength. The effect of energy band offsets in conduction and valance band on the transportation of minority carriers has been studied. The influences of doping concentration, electron affinity gradient and the pn junction position within heterostructure on potential barrier have been analyzed. The optical characterization has been carried out in respect of quantum efficiency, and detectivity of the heterojunction photodetector. In present model the Johnson–Nyquist and shot noise has been considered in calculation of detectivity. The simulated results has been compared and contrasted with the available experimental results. Results of our analytical-cum-simulation study reveal that under suitable biasing condition, the photodetector offers a dark current, ID ≈ 6.5 × 10−12 A, a zero-bias resistance–area product, R0A ≈ 11.3 Ω m2, quantum efficiency, η ≈ 78%, NEP = 2 × 10−12 W Hz1/2 and detectivity D* ≈ 4.7 × 1010 mHz1/2/W.  相似文献   

11.
The multichannel Raman spectrometry has been used in the study of the isomerization reaction of an 80% cis PA film into a trans PA, using a laser beam for a double purpose. It is employed simultaneously as an activation agent inducing the isomerization reaction and the Raman diffusion. In each experience, the power of the laser beam Pi(λ) was equivalent to the temperature. Twelve spectra have been recorded at different time periods tj = j·dt. The integrations of the Raman intensities related to two selected bands were numerically calculated.We also proposed an original method for the determination of the isomeric composition. A quantitative relationship between the equilibrium temperature and the laser beam power (in the range of laser power: 30 < Pi(λ) < 300 mW) has been found. An estimate number of isomerized molecules N0 and then a correction factors fcis and ftrans were also obtained.  相似文献   

12.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

13.
Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T1 and T2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of ζ − T2 and T1 − T2 are used in combination to provide the flow propagators without relaxation weighting. T1 − ζ correlations cannot be used due to the loss of T1 information during the displacement observation time Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.  相似文献   

14.
Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl-l-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H–1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 (S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 (δ = 8 ppm) and H4 (δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 − 3) × 10−4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 − 137) × 10−4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model solutions of histidine and N-acetyl-l-aspartate (NAA) enabled the assignment of an additional signal component at δ = 8 ppm of Cs in vivo to the amide group at the peptide bond. The visibility of this proton could result from hydrogen bonding which would agree with the anticipated stronger motional restriction of Cs. Referring to the observation that all dipolar-coupled multiplets resolved in localized in vivo 1H NMR spectra of human m. gastrocnemius collapse simultaneously when the fibre structure is tilted towards the magic angle (θ ≈ 55°), a common model for molecular confinement in muscle tissue is proposed on the basis of an interaction of the studied metabolites with myocellular membrane phospholipids.  相似文献   

15.
Ternary polycrystalline Zn1−xCdxO semiconductor films with cadmium content x ranging from 0 to 0.23 were obtained on quartz substrate by pulse laser deposited (PLD) technique. X-ray diffraction measurement revealed that all the films were single phase of wurtzite structure grown on c-axis orientation with its c-axis lattice constant increasing as the Cd content x increasing. Atomic force microscopy observation revealed that the grain size of Zn1−xCdxO films decreases continuously as the Cd content x increases. Both photoluminescence and optical measurements showed that the band gap decreases from 3.27 to 2.78 eV with increasing the Cd content x. The increase in Cd content x also leads to the broadening of the emission peak. The resistivity of Zn1−xCdxO films decreases evidently for higher values of Cd content x. The shift of PL emission to visible light as well as the decrease of resistivity makes the Zn1−xCdxO films potential candidate for optoelectronic device.  相似文献   

16.
The equation of state of the hard-sphere fluid is studied by a Monte Carlomolecular dynamics method for volumes ranging from 25V 0 to 1.6V 0 , whereV 0 is the close-packed volume, and for system sizes from 108 to 4000 particles. TheN dependence of the equation of state is compared to the theoretical dependence given by Salsburg for theNPT ensemble, after correction for the ensemble difference, in order to obtain estimates for the thermodynamic limit. The observed values of the pressure are compared with both the [3/2] and the [2/3] Padé approximants to the virial series, using Kratky's value for the fifth virial coefficientB 5 and choosingB 6 andB 7, to obtain a least-squares fit. The resulting values ofB 6 andB 7 lie within the uncertainties of the Ree-Hoover-Kratky Monte Carlo estimates for these virial coefficients. The values ofB 8,B 9, andB 10 predicted by our optimal [3/2] approximant are also reported. Finally, the Monte Carlo-molecular dynamics equation of state is compared with a number of analytic expressions for the hard-sphere equation of state.Work supported by the Office of Basic Energy Sciences, U.S. Department of Energy.  相似文献   

17.
The glasses of the composition 10ZnO-30ZnF2-60B2O3 doped with different concentrations of CoO were prepared. Differential scanning calorimetric (DSC) studies, optical absorption, photoluminescence and infrared spectra of these glasses have been carried out. DSC studies have indicated that the resistance of the glass against devitrification increases with the increase in the concentration of CoO. Optical absorption spectra have exhibited one octahedral band due to 4T1g(F)→2T1g(H) and two tetrahedral bands due to 4A2(4F)→4T1(4P) 4A2(4F)→4T1(4F) transitions of Co2+ ions at about 525, 570 and 1400 nm, respectively. As the concentration of CoO is increased the tetrahedral bands are observed to grow at the expense of octahedral band. The luminescence spectra have exhibited two emission bands in the spectral regions of 600-700 nm and 800-900 nm due to 4T1(4P)→4A2(4F) and 4T1(4P)→4T2(4F) tetrahedral transitions of Co2+ ions, respectively. With the increasing content of cobalt ions in the glass matrix, the half width and intensity of these bands are observed to increase. The analysis of the results of these two spectra coupled with IR spectra has indicated that as the concentration of CoO is increased in the glass matrix, the tetrahedral occupancy of cobalt ions dominates over the octahedral occupancy and increase the rigidity of the glass network.  相似文献   

18.
Oxygen nonstoichiometry (δ), total conductivity (σ) and thermoelectric power (S) of the LaFe0.7Ni0.3O3 − δ sample have been studied as functions of temperature and oxygen partial pressure. Based on the results of the direct reduction of the sample in hydrogen flow at 1100 °C the absolute oxygen content (3 − δ) has been found to vary from 2.999 to 2.974 in the range of 1273-1373 K and 10− 3-0.21 atm. The point defect equilibrium models have been proposed and fitted to the set of experimental data in the form of log p(O2) = f(δ)T dependences. The values of standard thermodynamic quantities of defect formation reactions have been assessed. The joint analysis of oxygen nonstoichiometry, total conductivity and thermoelectric power has been performed using a small-polaron approach. The values of partial conductivity, partial thermopower and mobilities of electronic charge carriers have been calculated. The p-type semiconducting behavior of LaFe0.7Ni0.3O3 − δ has been explained by the higher mobility values of electron holes than those of electrons in the whole range of thermodynamic parameters studied.  相似文献   

19.
20.
This paper gives the equilibrium distribution of polymer sizes for Flory'sA g RB f–g model of polymerization. In this model, the polymers are composed of structural units withg functional groups of the typeA and (f-g) functional groups of the typeB. Reaction is subject to three conditions: (1) Functional groups of the typeA react only with those of typeB, and vice versa. (2) Intramolecular reactions do not occur [and therefore only branched-chain (noncyclic) polymers and formed]. (3) Subject to conditions (1) and (2), all functional groups are equally reactive. The derivation employs Stockmayer's statistical mechanical method (first used on Flory'sRA f model), coupled with a recursion giving the number of distinct polymers which may be assembled fromk units of theA g RB f–g type. We also give distributions for a limiting case of theA g RB f–g model, the so-calledA g RB model. This paper completes the solution of the Smoluchowski coagulation equation (monodisperse case) for the kernelsa ij =A + B(i +j)+ Cij. The proof will be given in another publication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号