首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new photoactive materials compatible with environmentally friendly solvents (water and methanol) have been synthesized and characterized. They are comprised of a porous matrix of polystyrene and divinylbenzene with bound Rose Bengal and additional pendant groups added to increase the hydrophilicity (ethylenediamine and γ-gluconolactone). The new polymers are efficient photocatalysts capable of generating singlet oxygen after irradiation with visible light. Photochemical oxygenations of 9,10-anthracenedipropionic acid and 2-furoic acid have been carried out. The measured conversions indicate that the new supported photosensitizers are more effective than the parent hydrophobic polymer. Figure
New photoactive polymers for oxidations in aqueous solvent  相似文献   

2.
A Fenton oxidation system employing zero-valent iron (whose source was swarf, a residue of metallurgical industries, in powder form) and hydrogen peroxide for the treatment of an aqueous solution with six pesticides was developed, and the effect of the iron metal content, pH, and hydrogen peroxide concentration was evaluated. The characterization of the aqueous solution resulted in: pH 5.6, 105 mg L?1 of dissolved organic carbon, and 44.6 NTU turbidity. In addition, the characterization of the swarf by FAAS and ICP-MS showed 98.43?±?7.40 % of zero-valent iron. The removal was strongly affected by the content of iron metal, pH, and hydrogen peroxide concentration. The best degradation conditions were 2.0 g swarf, pH 2.0, and 5 mmol L?1 H2O2. At the end of the treatment, the pesticide degradation ranged from 60 to 100 %, leading to 55 % mineralization. Besides, all hydrogen peroxide was consumed and the determination of total dissolved iron resulted in 2 mg L?1. Thus, the advantages of this system are rapid degradation (up to 20 min), high-degradation rates, simple handling, and low cost.
Figure
A Fenton oxidation system employing Fe0 (in which the source of Fe0 was swarf, a residue in powder form of metallurgical industries) and H2O2 for the degradation of synthetic wastewater comprising six pesticides was developed, and the effect of the amount of Fe0, pH, and H2O2 concentration was evaluated.  相似文献   

3.
In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm?2) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90 % was removed. In the case of COD removal, the application of a current density greater than 40 mA cm?2 favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified. Figure
Chemical structures of a NY and b RR  相似文献   

4.
To explain the detailed process involved in phosphorus removal by periphyton, the periphyton dominated by photoautotrophic microorganisms was employed in this study to remove inorganic phosphorus (P i ) from wastewater, and the removal kinetics and isotherms were then evaluated for the P i removal process. Results showed that the periphyton was capable of effectively removing P i that could completely remove the P i in 24 h at an initial P i concentration of 13 mg P L?1. Furthermore, the P i removal process by the periphyton was dominated by adsorption at initial stage (~24 h), which involved physical mechanistic process. However, this P i adsorption process was significantly influenced by environmental conditions. This work provides an insight into the understanding of phosphorus adsorption by periphyton or similar microbial aggregates.
Graphical Abstract
?  相似文献   

5.
Butyltin (BT) contamination was evaluated in hermit crabs from 25 estuaries and in sediments from 13 of these estuaries along about 2,000 km of the Brazilian coast. BT contamination in hermit crabs ranged from 2.22 to 1,746 ng Sn g-1 of DBT and 1.32 to 318 ng Sn g-1 of TBT. In sediment samples, the concentration also varied widely, from 25 to 1,304 ng Sn g-1 of MBT, from 7 to 158 ng Sn g-1 of DBT, and from 8 to 565 ng Sn g-1 of TBT. BTs are still being found in surface sediments and biota of the estuaries after the international and Brazilian bans, showing heterogeneous distribution among and within estuaries. Although hermit crabs were previously tested as an indicator of recent BT contamination, the results indicate the presence of contamination, probably from resuspension of BTs from deeper water of the estuary.
Figure
Contamination of the environment and biota continues after the ban  相似文献   

6.
The interest on outdoor photocatalytic materials is growing in the last years. Nevertheless, most of the experimental devices designed for the assessment of their performance operate at controlled laboratory conditions, i.e., pollutant concentration, temperature, UV irradiation, and water vapor contents, far from those of real outdoor environments. The aim of the present study was the design and development of an experimental device for the continuous test of photocatalytic outdoor materials under sun irradiation using real outdoor air as feed, with the concomitant fluctuation of pollutant concentration, temperature, and water vapor content. A three-port measurement system based on two UV-transparent chambers was designed and built. A test chamber contained the photoactive element and a reference chamber to place the substrate without the photoactive element were employed. The third sampling point, placed outdoors, allowed the characterization of the surrounding air, which feeds the test chambers. Temperature, relative humidity (RH), and UV-A irradiance were monitored at each sampling point with specific sensors. NO x concentration was measured by a chemiluminescence NO x analyzer. Three automatic valves allowed the consecutive analysis of the concentration at the three points at fixed time intervals. The reliability of the analytical system was demonstrated by comparing the NO x concentration data with those obtained at the nearest weather station to the experimental device location. The use of a chamber-based reaction system leads to an attenuation of NO x and atmospheric parameter profiles, but maintaining the general trends. The air characterization results showed the wide operating window under which the photoactive materials should work outdoors, depending on the traffic intensity and the season, which are reproduced inside the test chambers. The designed system allows the measurement of the photoactivity of outdoor materials or the comparison of several samples at the same time. The suitability of the system for the evaluation of the DeNO x properties of construction elements at realistic outdoor conditions was demonstrated. The designed experimental device can be used 24/7 for testing materials under real fluctuations of NO x concentration, temperature, UV irradiation, and relative humidity and the presence of other outdoor air pollutants such as VOCs, SO x , or NH3. The chamber-based design allows comparing a photocatalytic material with respect to a reference substrate without the photoactive phase, or even the comparison of several outdoor elements at the same time. Figure
?  相似文献   

7.
The search for novel microorganisms able to degrade olive mill wastewaters (OMW) and withstand the toxic effects of the initially high phenolic concentrations is of great scientific and industrial interest. In this work, the possibility of reducing the phenolic content of OMW using new isolates of fungal strains (Coriolopsis gallica, Bjerkandera adusta, Trametes versicolor, Trichoderma citrinoviride, Phanerochaete chrysosporium, Gloeophyllum trabeum, Trametes trogii, and Fusarium solani) was investigated. In vitro, all fungal isolates tested caused an outstanding decolorization of OMW. However, C. gallica gave the highest decolorization and dephenolization rates at 30 % v/v OMW dilution in water. Fungal growth in OMW medium was affected by several parameters including phenolic compound concentration, nitrogen source, and inoculum size. The optimal OMW medium for the removal of phenolics and color was with the OMW concentration (in percent)/[(NH4)2SO4]/inoculum ratio of 30:6:3. Under these conditions, 90 and 85 % of the initial phenolic compounds and color were removed, respectively. High-pressure liquid chromatography analysis of extracts from treated and untreated OMW showed a clear and substantial reduction in phenolic compound concentrations. Phytotoxicity, assessed using radish (Raphanus sativus) seeds, indicated an increase in germination index of 23–92 % when a 30 % OMW concentration was treated with C. gallica in different dilutions (1/2, 1/4, and 1/8).
Figure
?  相似文献   

8.
Cadmium (Cd) is an extremely toxic metal commonly found as an environmental contaminant from industrial and agricultural sources, posing severe risks to human health. In this study, the binding mechanism of Cd(II)–human serum albumin (HSA) complex and the effect of Cd(II) on the conformational stability and structural state of HSA were comprehensively investigated through a series of efficient and appropriate methods. X-ray photoelectron spectroscopy accurately described the microenvironmental changes around protein C, N, and O atoms in the presence of Cd(II). Fluorescence results indicated that the probable mechanism of Cd(II)–HSA interaction is a static quenching process. Fourier transform infrared spectroscopy and dynamic light scattering showed Cd(II) complexation altered HSA conformation and the microenvironments of Trp and Tyr residues, accompanied by the size increases of HSA aggregates. This research will be helpful for understanding the toxic effects of Cd(II) on protein function in vivo.
Figure
The detailed binding mechanism between Cd(II) and HSA accompanied with the conformational analysis of HSA was comprehensively investigated at the molecular level  相似文献   

9.
In the current study, the bioaccumulation of essential and nonessential metals and related antioxidant activity were analyzed in three organs (muscle, gills, and liver) of herbivorous (HF) and carnivorous (CF) edible fish of Chenab River. The comparative analysis revealed a more heterogeneous accumulation of metals in the muscles of HF fish than that of CF fish [chromium (Cr, 3.4 μg g?1), cobalt (Co, 1.7 μg g?1), copper (Cu, 3 μg g?1), and iron (Fe, 45 μg g?1) versus Cr (1.3 μg g?1), Co (0.1 μg g?1), Cu (1.1 μg g?1), and Fe (33 μg g?1), respectively, P?<?0.001]. These results implied an organ-specific accumulation of metals at different trophic levels. According to logistic regression analysis, the bioaccumulation of metals had marked differences in HF and CF. The antioxidant activity was significantly related to the tissue type and the metals to which the organs are exposed to. The liver of CF fish had a higher activity of antioxidant superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and lipid peroxidase (LPO) than that of HF (P?<?0.05). LPO and guaiacol peroxidase (POD) in both groups were associated with a number of metals, but in HF, cadmium (Cd), Cr, Pb, and Zn were more related with the LPO and SOD activities. Moreover, Cd, Co, Fe, Pb, Ni, Cu, and Zn were above the permissible limits set by various agencies. In numerous cases, our results were even higher than those previously reported in the literature. The results provide an insight into the pollution pattern of Chenab River. These results may be helpful in the future to identify biomarkers of exposure in aquatic organisms.
Figure
?  相似文献   

10.
Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B): A $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_o={k}_o\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ B $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_i={k}_i\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ where R o and k o are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R i , and k i are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k i on the concentration of inhibitor, [Inh], was defined by Eq. (C). C $$ {k}_i={k}_0/\left(1+B\left[\mathrm{Inh}\right]\right) $$ where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k i versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k inh , the rate constant for the reaction of SO4 ? radical with the inhibitor, by Eq. (D). D $$ B=\left(9\pm 2\right)\times 1{0}^{-4}\times {k}_{inh} $$ Equation (D) may be used to calculate the values of either of B or k inh provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh]?>?0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh]?≥?10. B[Inh] value can be used as a guide whether the reaction step: SO4 ??+?organics? \( \overset{k_{inh}}{\to } \) ?SO4 2??+?non-chain products: should be included in the multiphase models or not.  相似文献   

11.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

12.
Dissolved arsenic (As) concentrations detected in groundwater bodies of the Emilia-Romagna Region (Italy) exhibit values which are above the regulation limit and could be related to the natural composition of the host porous matrix. To support this hypothesis, we present the results of a geochemical modeling study reproducing the main trends of the dynamics of As, Fe, and Mn concentrations as well as redox potential and pH observed during batch tests performed under alternating redox conditions. The tests were performed on a natural matrix extracted from a deep aquifer located in the Emilia-Romagna Region (Italy). The solid phases implemented in the model were selected from the results of selective sequential extractions performed on the tested matrix. The calibrated model showed that large As concentrations have to be expected in the solution for low crystallinity phases subject to dissolution. The role of Mn oxides on As concentration dynamics appears significant in strongly reducing environments, particularly for large water–solid matrix interaction times. Modeled data evidenced that As is released firstly from the outer surface of Fe oxihydroxides minerals exhibiting large concentrations in water when persistent reducing conditions trigger the dissolution of the crystalline structure of the binding minerals. The presence of organic matter was found to strongly affect pH and redox conditions, thus influencing As mobility.
Figure
Graphical Abstract  相似文献   

13.
l-meta-tyrosine is an herbicidal nonprotein amino acid isolated some years ago from fine fescue grasses and characterized by its almost immediate microbial degradation in soil (half-life <24 h). Nine monohalogenated or dihalogenated analogs of this allelochemical have been obtained through a seven-step stereoselective synthesis from commercial halogenated phenols. Bioassays showed a large range of biological responses, from a growth root inhibition of lettuce seedling similar to that noted with m-tyrosine [2-amino-3-(2-chloro-5-hydroxyphenyl)propanoic acid or compound 8b] to an increase of the primary root growth concomitant with a delay of secondary root initiation [2-amino-3-[2-fluoro-5-hydroxy-3-(trifluoromethyl)phenyl]propanoic acid or compound 8h]. Compound 8b was slightly less degraded than m-tyrosine in the nonsterilized nutritive solution used for lettuce development, while the concentration of compound 8h remained unchanged for at least 2 weeks. These data indicate that it is possible to manipulate both biological properties and degradation of m-tyrosine by halogen addition.  相似文献   

14.
Transport and fate of perfluoro- and polyfluoroalkyl substances (PFASs) in an urban water body that receives mainly urban runoff was investigated. Water, suspended solids, and sediment samples were collected during the monsoon (wet) and inter-monsoon (dry) season at different sites and depths. Samples were analyzed for C7 to C12 perfluoroalkyl carboxylate homologues (PFCAs) (PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA), perfluorohexane, perfluorooctane, and 6:2-fluorotelomer sulfonate (PFHxS, PFOS, and 6:2FtS, respectively), perfluorooctane sulfonamide (FOSA), N-ethyl FOSA (sulfluramid), N-ethyl sulfonamidoethanol (N-EtFOSE), and N-methyl and N-ethyl sulfonamidoacetic acid (N-EtFOSAA and N-MeFOSAA, respectively). Concentrations in wet samples were only slightly higher. The sum total PFAS (ΣPFAS) concentrations dissolved in the aqueous phase and sorbed to suspended solids (SS) ranged from 107 to 253 ng/L and 11 to 158 ng/L, respectively. PFOA, PFOS, PFNA, PFHxS, and PFDA contributed most (approximately 90 %) to the dissolved ΣPFASs. N-EtFOSA dominated the particulate PFAS burden in wet samples. K D values of PFOA and PFOS calculated from paired SS and water concentrations varied widely (1.4 to 13.7 and 1.9 to 98.9 for PFOA and PFOS, respectively). Field derived K D was significantly higher than laboratory K D suggesting hydrophobic PFASs sorbed to SS resist desorption. The ΣPFAS concentrations in the top sedimentary layer ranged from 8 to 42 μg/kg and indicated preferential accumulation of the strongly sorbing long-chain PFASs. The occurrence of the metabolites N-MeFOSAA, N-EtFOSAA and FOSA in the water column and sediments may have resulted from biological or photochemical transformations of perfluorooctane sulfonamide precursors while the absence of FOSA, N-EtFOSA and 6:2FtS in sediments was consistent with biotransformation.  相似文献   

15.
To evaluate the genotoxic risk that contaminated sediment could constitute for benthic organisms, three contaminated (VA, VC and VN) and one uncontaminated (RN) sediment samples were collected in the Berre lagoon (France). Potentially bioavailable contaminants in sediments were obtained using sediment extraction with synthetic seawater adjusted to pH 4 or pH 6, simulating the range of pH prevailing in the digestive tract of benthic organisms. The genotoxic activities of these extracts were evaluated by three short-term bioassays: the Salmonella mutagenicity test using the Salmonella typhimurium strain TA102, the alkaline comet assay and the micronucleus assay on the Chinese Hamster Ovary cells CHO-K1. Results of the Salmonella mutagenicity assay detected a mutagenic response for RN extract at pH 6, and for VA extract at pH 4. Results of the comet and micronucleus assays detected low genotoxic/clastogenic activities for VA and VC extracts at pH 6 and higher activities for RN, VA and VC extracts at pH 4. To identify if metals (Al, Fe, Mn, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were involved in these genotoxic activities, their concentrations were determined in the extracts, and their speciation was assessed by thermodynamic calculations. Results showed that extracts from sites VA, VC and VN generally presented the highest trace metal contents for both extractants, while the site RN presented lower trace metal contents but the highest Fe and Mn contents. Thermodynamic calculations indicated that Fe, Mn, As and in a lower extend Co, Ni and Zn were mainly present under free forms in extracts, and were consequently, more likely able to induce a genotoxic effect. Results globally showed no correspondence between free metal contents and genotoxic activities. They suggested that these positive results could be due to uncharacterized compounds, acting as direct genotoxic agents or enhancing the genotoxic properties of analyzed metals.  相似文献   

16.

Background, aim, and scope

Mutagenic nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been known to arise in the environment through direct emissions from combustion sources and nitration of PAHs, primarily in the atmosphere. In the marine environment, PAHs are one of the classic anthropogenic organic pollutants, while nitrite (NO 2 ) is produced naturally via various biological processes like imbalance in nitrification/denitrification or eutrophication and subsequent oxygen depletion from an oversupply of nutrients. In this paper, we report the formation of PAH-DNA adducts in fish contaminated with PAHs and exposed to NO 2 in the ambient water. Electrospray ionization tandem mass spectrometric (ESI-MS/MS) analysis of the bile of the euryhaline fish Oreochromis mossambicus exposed simultaneously to field relevant sublethal concentrations of phenanthrene and NO 2 and collision-induced dissociation of selected ions revealed the presence of DNA-PAH adducts. The present study indicates that, although several high sensitivity techniques have been developed for the analysis of PAH derived DNA adducts, MS/MS has emerged as a powerful tool in the detection and structure elucidation of DNA adducts.

Materials and methods

Juvenile O. mossambicus from a local estuarine fish farm were used with increasing frequency for carcinogenicity testing and comparative cancer research. The fish were exposed to the alkylating agent phenanthrene in the presence of NO 2 . Composite untreated bile samples after dilution with methanol: water (1:1; v/v) were analyzed by ESI-MS.

Results

Several adducts could be evidenced in the bile by MS/MS. Deoxyadenosine/deoxyguanosine having a mass in the range of 450–650 amu is detected. In addition, a segment of modified dinucleotide with a mass that corresponds to a dimer consisting of a modified guanosine and a normal guanosine has also been identified in the bile.

Discussion

The formation of certain types of DNA adducts is a crucial step in the induction of cancer and a primary stage in mutagenesis. Phenanthrene injected by i.p. route led to the transformation of phenanthrene to N-formyl amino phenanthrene-N 6-deoxyadenosine adduct, whereas the fish co-exposed to phenanthrene and ambient nitrite metabolizes PAH to mono-, di- as well as trinitro derivatives, which then react with DNA leading to the formation of mainly modified guanosine and adenosine adducts. In the present investigation, dinitrophenanthrene diol epoxide (DNPDE) adduct with guanosine (m/z 587) seems to be the dominant adduct in the mixture, and its presence is shown first as a comparatively less stable adduct, which decomposes to give a more stable N2 adduct (m/z 567).

Conclusions

MS/MS has proved to be useful in the rapid determination and discrimination of structurally different phenanthrene/derivatives DNA adducts in a complex mixture of fish bile co-exposed to phenanthrene and nitrite. However, the nature of metabolites formed is likely determined by the route of PAH administration, and there is a need to further define the early biochemical events of carcinogenesis in these species.

Recommendations and perspectives

DNA adduct analysis in fish bile offers a promising approach to study the risk of potentiation of anthropogenic chemicals into genotoxic compounds in the presence of nitrite in the marine environment. We believe this is the first report on the formation of DNA-phenanthrene adducts on co-exposure of the fish to PAH and nitrite.  相似文献   

17.

Background

PM10 aerosol samples were simultaneously collected at two urban and one urban background sites in Fuzhou city during two sampling campaigns in summer and winter. PM10 mass concentrations and chemical compositions were determined.

Methods

Water-soluble inorganic ions (Cl?, NO 3 ? , SO 4 2? , NH 4 + , K+, Na+, Ca2+, and Mg2+), carbonaceous species (elemental carbon and organic carbon), and elements (Al, Si, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, and Pb) were detected using ion chromatography, thermal/optical reflectance, and proton-induced X-ray emission methods, respectively.

Results

PM10 mass concentrations, as well as most of the chemical components, were significantly increased from urban background to urban sites, which were due to enhanced anthropogenic activities in urban areas. Elements, carbonaceous species, and most of the ions were more uniformly distributed at different types of sites in winter, whereas secondary ion SO 4 2? , NO 3 ? , and NH 4 + showed more evident urban-background contrast in this season. The chemical mass closure indicated that mineral dust, organic matters, and sulfate were the most abundant components in PM10. The sum of individually measured components accounted for 86.9?C97.7% of the total measured PM10 concentration, and the discrepancy was larger in urban area than in urban background area.

Conclusion

According to the principal component analysis?Cmultivariate linear regression model, mineral dust, secondary inorganic ions, sea salt, and motor vehicle were mainly responsible for the PM10 particles in Fuzhou atmosphere, and contributed 19.9%, 53.3%, 21.3%, and 5.5% of PM10, respectively.  相似文献   

18.
Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.  相似文献   

19.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   

20.
From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year?1, S0), current sediment burial (100 mm year?1, S10), and strong sediment burial (200 mm year?1, S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day?1)?≈?S20 (0.001710 day?1)?>?S0 (0.000768 day?1) (p?<?0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p?>?0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号