首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为分析弹头形状对动靶侵彻性能的影响以及解决有限元法模拟子弹侵彻问题时存在的网格畸变问题,本文采用物质点法建立了弹体侵彻靶板的数值模型。利用编写的程序对卵形弹侵彻静靶过程进行了仿真,并将仿真结果与实验测试结果进行了对比分析。结果表明,利用物质点法仿真子弹侵彻过程是可行和有效的。通过对平头弹、球形弹、卵形弹侵彻动靶过程的模拟仿真,得到了弹体贯穿动靶后弹体的剩余速度、偏转角、扭转角、靶板的毁伤效果。所得结果显示:当靶板速度较低时,卵形弹侵彻动靶时靶板的毁伤面积最小;当靶板速度较高时,卵形弹侵彻动靶时靶板的毁伤面积最大;弹体偏转角和扭转角均随动靶速度的增加而逐渐增大,且卵形弹的偏转角和扭转角均大于平头弹和球形弹;当动靶初速度小于300m/s时,卵形弹的侵彻能力较强;当动靶初速度大于300m/s时,球形弹的侵彻能力较强。本文研究对弹丸侵彻和装甲防护等军工领域有一定的指导作用。  相似文献   

2.
细长薄壁弹体的屈曲和靶体等效分析   总被引:2,自引:2,他引:2  
利用金属靶开展动能深侵彻弹的穿甲屈曲实验研究。实验观察到长/短型弹体动塑性屈曲破坏分别表现为轴向皱褶型和轴向外翻撕裂型2种基本模式。不同的屈曲破坏模式与弹体几何、撞击初条件以及靶材等密切相关。区别于刚性尖头弹穿甲金属靶的韧性隧道开孔,尖头弹因屈曲破坏易变形为钝头形,导致弹体穿透靶板表现为挤凿穿甲。利用薄壁中空柱壳的弹性欧拉屈曲分析和弹体塑性屈服的极限分析给出弹体动塑性屈曲的临界条件。同时给出屈曲实验中混凝土靶和金属靶的等效条件。  相似文献   

3.
在轻气炮上进行了卵形头、平头及半球形头杆弹正撞击等厚接触式双层靶的实验,得到了这几种 结构的剩余速度-初始速度曲线及弹道极限速度,研究了叠层顺序对靶体抗侵彻性能的影响。实验表明:叠层 顺序对双层靶体抗侵彻性能的影响与弹体头部形状密切相关。对于平头和半球形头弹,厚板在前、薄板在后 的靶体的弹道极限速度高于相反叠层顺序的靶体的弹道极限速度;但是对于卵形头弹,薄板在前、厚板在后的 靶体的弹道极限速度高于相反叠层顺序的靶体的弹道极限速度。叠层顺序对靶体弹道极限速度的影响主要 通过改变靶板的失效形式和靶板间的作用力实现。  相似文献   

4.
研究了圆锥形头和卵形头刚性弹垂直撞击塑性金属靶板扩孔冲塞型和延性扩孔型穿孔模式,考虑靶板背面自由边界的影响,提出两种两阶段工程分析模型,得到最小穿透能量的解析解。由球形空腔膨胀理论和两阶段总耗能最小确定第一阶段的侵彻深度,由功能原理和圆柱形空腔膨胀理论计算第一阶段侵彻扩孔耗能,延性扩孔型第二阶段耗能近似按Taylor扩孔理论计算,扩孔冲塞型第二阶段耗能考虑了加速塞块和剪断塞块所损耗的能量。与铝合金和装甲钢靶板弹道试验数据比较表明,本文两阶段模型的计算结果与试验结果吻合较好。  相似文献   

5.
以破爆型串联战斗部后级随进弹对预开孔靶侵彻过程为研究对象,基于锥形预开孔和库仑摩擦模型,发展完善了包括扩孔/开坑和稳定侵彻的卵形弹体侵彻预开孔靶理论模型。分别对该模型在侵彻脆性和弹塑性靶体的有效性进行了实验验证。利用该模型分析了弹头曲径比、预开孔直径、预开孔形状等对侵彻结果的影响。研究结果表明:发展完善的模型计算结果与实验数据吻合较好。柱形开孔情况下,侵彻速度、弹头曲径比及相对孔径同侵彻深度呈正比;在侵彻容积相同的条件下,弹体侵彻预开锥孔的侵深结果与锥角及相对入孔孔径变化关系较大。  相似文献   

6.
利用二级轻气炮装置,选取材料为38CrMnSi的卵形头弹对素混凝土靶体进行了撞击实验。根据得到的实验数据以及实验后回收的弹体和靶体,分析了动能弹高速侵彻素混凝土时的弹靶响应特性,包括弹体质量损失规律及其机理、靶体损伤特征和侵彻深度随速度的变化规律。结果分析表明,弹体侵彻素混凝土靶体过程包括锥型弹坑阶段和隧道稳定阶段,从较低速到高速侵彻,弹体发生了CRH变小、头部半球化和锥形化的特征性现象,并伴随着不同程度的质量损失,由此引发侵彻深度在高速侵彻时较小的波动。进一步引用弹体侵彻混凝土靶响应模型进行了理论分析,发现在较低速撞击时,利用模型计算得到的值与实验结果比较吻合,而高速撞击条件下偏差则较大,需要考虑弹体头部形状变化对侵彻响应结果的影响。  相似文献   

7.
在综合考虑弹体结构稳定性及截面比动能的前提下, 提出一种介于尖卵形弹体及尖锥形弹体间的头部对称刻槽弹体, 以期达到提高侵彻深度的目的。以尖卵形弹体侵彻深度为基准, 开展头部对称刻槽弹体侵彻半无限厚铝合金靶实验。在此基础上, 推导得到可描述头部对称刻槽弹体侵彻2A12铝合金靶过程的局部相互作用模型。同时, 结合头部对称刻槽弹体侵彻后靶体破坏现象, 提出适用于头部对称刻槽弹体的靶体响应力, 进而确立头部对称刻槽弹体的侵彻深度模型。实验结果与理论计算表明, 头部对称刻槽弹体具有相对于尖卵形弹体更好的侵彻能力。头部对称刻槽弹体侵彻深度提高的原因是弹体头部结构截面比动能增加及其侵彻过程中的靶体弱化效应, 其中弱化效应是侵彻深度提高的主控因素。  相似文献   

8.
为了得到钢筋混凝土目标在动能弹高速冲击作用下的破坏数据,基于大口径发射平台进行了100 mm口径卵形弹体高速侵彻钢筋混凝土靶体的实验,弹体质量为5.4 kg,靶体尺寸分为2 m × 2 m × 1.25 m 和 2 m × 2 m × 1.50 m两种,混凝土抗压强度为50 MPa,弹体侵彻速度为1 345~1 384 m/s,实验获得了弹体的侵彻深度及钢筋混凝土靶体的破坏数据。通过“钢筋混凝土全体单元分离式共节点建模方法”建立钢筋混凝土靶体模型,结合Riedel-Hiermaier-Thoma本构模型对实验工况进行计算。数值模拟给出了侵彻过程中钢筋的拉压力变化和分布规律,很好地模拟出贴近迎弹面钢筋在弹体高速冲击作用下伴随混凝土反向飞溅而产生的反向拉伸现象及靶体背面钢筋在混凝土崩落作用下发生的拉伸现象;数值模拟得到的弹体侵深数据、现象与实验结果吻合良好,实验验证了“钢筋混凝土全体单元分离式共节点建模方法”的可靠性。  相似文献   

9.
针对高速侵彻过程中的弹体破碎断裂问题,本文中设计2种不同壁厚的试验弹,进行约1 000 m/s着速的高强度岩体侵彻试验,试验表明:在该高着速条件下,两种结构的试验弹体均发生完全破碎且未能有效侵入岩石靶,而岩石靶体仅在表层产生粉碎性破坏;另外,高速侵彻岩石靶的弹体头部破碎情况与侵彻金属薄靶有所区别。在试验基础上,利用Autodyn-3D建立了弹体侵彻岩石靶的物理模型,结合SPH算法与Mott失效模型对弹体破坏过程进行了数值模拟,可有效地揭示弹体破碎机理,并进一步讨论模拟装药和小范围内不同高速对弹体破坏的影响。试验结果和建立的数值模型可为研究高速侵彻中弹体结构安全提供参考。  相似文献   

10.
大长细比结构弹体侵彻2024-O铝靶的弹塑性动力响应   总被引:2,自引:0,他引:2  
为研究大长细比结构弹体在撞击典型硬目标早期的结构动力学响应,利用57轻气炮进行了直径1.4 cm、量纲一壁厚0.1和0.15、长细比8和12、头部系数3和4.5的卵形空心弹体对2024-O铝靶的侵彻实验研究,利用高速摄影系统记录了弹体撞靶过程,观察到大长细比弹体垂直撞击硬目标过程中的局部墩粗、塑性屈曲2种结构破坏模式,以及斜侵彻过程中的整体塑性弯曲、弯曲与墩粗耦合、弯曲与屈曲耦合3种结构破坏模式和实时动力学响应过程。基于对指数硬化材料的空腔膨胀理论建立了弹体垂直侵彻模型,给出了在轴向及横向载荷交互作用下计算刚塑性自由梁危险截面屈服函数的控制方程,计算值与实验结果吻合较好。  相似文献   

11.
通过Φ57mm半穿甲弹对钢筋混凝土的垂直侵彻实验,得到了弹丸的撞靶速度、成坑深度、最大侵彻深度以及过载时程曲线等实验数据.对实验后钢筋的断裂特征进行分析,得到钢筋的典型破坏模式.将钢筋的破坏简化为弯曲+剪切断裂和弯曲+拉伸断裂这两种模式.根据混凝土侵彻模型和梁断裂失效理论,建立了刚性弹丸垂直侵彻钢筋混凝土的简化分析模型.将理论计算得到的侵彻深度、速度与过载时间历程分别与实验数据进行对比,结果表明两者吻合较好.研究表明,钢筋只对弹体侵彻过程产生局部影响,混凝土的抗侵彻阻力仍是钢筋混凝土抗侵彻阻力的主要组成部分.  相似文献   

12.
张朴  王卓  孔祥韶  谭柱华  吴卫国 《爆炸与冲击》2021,41(4):043301-1-043301-14
为研究剪切增稠液体(shear-thickening fluid, STF)液舱对弹体的防护性能,制备特定规格剪切增稠液体,并开展弹体侵彻剪切增稠液舱实验研究。实验中采用高速相机记录液舱侵彻过程中空泡的演化情况,并测试得到了弹体的剩余弹速以及前后靶板变形数据。实验结果显示,剪切增稠液体可有效抑制液舱侵彻过程中空泡的增长,从而降低液舱结构的损伤程度。结合空泡扩展理论模型,并考虑液体密度以及黏度变化对空泡增长的影响,验证了剪切增稠液体在高速冲击下产生的局部密度增大以及固化现象是抑制空泡扩展的主要原因。此外,剪切增稠液体对弹体速度的衰减作用明显,且相同初始弹速下,剪切增稠液体液舱前后靶板变形明显小于水体液舱。将剪切增稠液体填充于舰船液舱防护结构,可显著提高液舱结构的防护性能。  相似文献   

13.
陈林  王正国 《爆炸与冲击》1994,14(4):369-373
已发现高速投射物(HighVelocityProjectile,HVP)压力波可致培养的内皮细胞等损伤。但到目前为止,压力波引起细胞损伤的机理还不清楚。旨在用压力波于体外致伤培养肝细胞,并用自由基清除剂SOD处理受损细胞,以观察自由基在HVP压力波致伤机制中的作用。试验结果表明HVP压力波可引起培养肝细胞明显损伤,压力波损伤培养细胞的机制与其引起细胞自由基反应等有一定关系,预防性地给予自由基清除剂SOD可在一定程度上减轻压力波所引起的细胞损伤。  相似文献   

14.
球形弹对金属靶板侵彻问题的数值模拟   总被引:7,自引:0,他引:7  
何涛  文鹤鸣 《爆炸与冲击》2006,26(5):456-461
基于球形空穴膨胀模型(SCE),采用ABAQUS有限元商业软件并结合自主开发的ABAQUS用户子程序对球形弹侵彻金属靶进行了有限元3D数值模拟。根据空穴膨胀理论,靶体对侵彻弹体的影响可以用一个作用在弹体表面的力函数代替,这样在进行数值模拟时就无需划分靶体网格,也避免了复杂的接触问题,从而使模拟大大简化。模拟过程中考虑到弹体的可变形性和入射时的微小偏航角,并且考虑了弹体在运动过程中和靶体的接触分离效应。模拟结果与文献中的实验结果进行了比较,模拟结果与实验结果吻合得很好。  相似文献   

15.
一种形成尾翼型聚能侵彻体新方法的实验研究   总被引:2,自引:0,他引:2  
尾翼可以提高聚能侵彻体的飞行稳定性,如何形成有一定规律性的尾翼在聚能侵彻体的研究中具有重要意义。在药型罩上粘附隔板,利用隔板改变爆轰波波阵面的结构形状,使药型罩上的爆轰压力发生规律变化,从而发生规律性的变形,最终形成带有尾翼的聚能侵彻体,这是一种新的形成尾翼的方法。从药型罩微元压垮速度变化和药型罩表面爆轰压力变化的角度出发,对新方法形成尾翼的机理进行了初步探讨。通过合理设计隔板的几何尺寸对该方法形成尾翼型聚能侵彻体进行试验,试验回收到了带有尾翼的聚能侵彻体,说明新方法形成尾翼具有一定的可行性。  相似文献   

16.
平头弹丸正撞下钢筋混凝土靶板厚度方向的开裂   总被引:1,自引:0,他引:1  
主要针对钢筋混凝土靶板在受到平头弹丸撞击下发生的厚度方向开裂的问题进行研究,并提出了一个弹丸低速撞击有限厚度板的二阶段模型。模型中第一阶段为侵彻阶段,弹丸受到混凝土介质的侵彻阻力由静阻力和速度效应引起的动阻力组成;模型中第二阶段为开裂阶段,钢筋混凝土靶板发生动态剪切破坏的最大承载力可以通过静态剪切破坏最大承载力乘以一个动态增强因子得到。该模型可以用来预测钢筋混凝土靶板发生厚度方向开裂破坏的临界能量。模型预测与实验结果吻合较好。  相似文献   

17.
刚性弹侵彻动力学中的第三无量纲数   总被引:2,自引:0,他引:2  
采用侵彻阻力的一般表达式,计及速度一次项和减速度效应导致的附加虚拟质量项,利用量纲分析方法,明确定义控制刚性弹侵彻过程的第三无量纲物理量,即阻尼函数ξ.针对一般凸形弹头的侵彻问题开展分析,得到一般化的无量纲侵彻深度的计算公式;同时给出多个常用弹形的形状参数.针对已公开发表的不同弹形、靶材和撞击速度的侵彻实验数据,考察有无阻尼函数的理论预期,分析结果与实验数据一致.  相似文献   

18.
锥头弹丸低速撞击下薄金属靶板的穿透   总被引:1,自引:0,他引:1  
假定薄金属靶板的变形可分为局部变形和整体变形,在此基础上建立了一个新的分析模型,对固支薄金属靶板的低速穿透进行评估.靶板的局部变形分析通过准静态柱形空穴膨胀理论结合靶板的自由表面效应修正函数,给出了靶板对弹丸的阻力表达式,然后计算出局部变形耗能;整体变形分析采用了Wen-Jones模型的近似准静态方法,通过载荷-位移关系和虚功原理计算整体变形耗能.推出了锥头弹丸穿透金属靶板的耗能公式和弹道极限公式.模型预测结果与实验数据进行了比较,发现二者吻合得较好.  相似文献   

19.
旋转弹空气动力学   总被引:9,自引:0,他引:9  
本文叙述了旋转弹空气动力学的形成和研究内容;评述了它的研究进展,其中包括我们自己的理论与实验成果;阐述了与旋转弹气动设计有关的几个问题;指出了值得注意的研究动向.   相似文献   

20.
扩大成像视野对于开展充水容器中弹体入水冲击波传播及弥散方面的可视化研究具有重要的实际意义。阴影成像技术适用于大视野实验,且对流场冲击波和扰动的可视化研究具有简单性和通用性,其中直接阴影成像最为简单,但可靠点光源的缺乏是阻碍其发展应用的瓶颈。因此基于国产短弧氙灯管,自制了短弧氙灯点光源,根据阴影成像原理,设计出一种弹体入水冲击波阴影成像可视化系统,详细介绍了其组成和运行原理。利用该系统对高速弹体入水进行了试验研究,获得了弹体入水冲击波的阴影成像和冲击波信号的压力时程曲线,通过阴影成像和冲击波信号相结合分析了弹体入水冲击波的传播特性,并进行了理论验证。结果表明:该弹体入水冲击波阴影成像可视化系统具有可靠性和设计的合理性。弹体高速入水后,初始冲击波的强度最大,随着冲击波的传播,冲击波强度逐渐降低,水中冲击波的传播速度不断降低,球形冲击波的半径逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号