首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
传统的速度环控制在永磁同步电机负载突变时,会引起转速波动较大从而影响电机运行的稳定性,为了抑制转速波动,并实现电机转速的快速响应,采用了一种基于扩展滑模扰动观测器(Extended Sliding-mode Disturbance Observer,ESMDO)的改进型趋近率控制方法;新算法通过引入含有外部扰动的电机运动方程,并将扰动进行扩展分析,建立了扰动观测器的数学模型,增加扰动观测的准确性;为了减少滑模控制器的抖振,提高响应速度,提出了一种改进型的滑模趋近率,新控制器采用增益自适应、幂次自适应的方法,实现动态调节控制增益的目的;将新算法分别与基于传统指数趋近律的无模型算法和PI控制策略进行仿真对比,仿真结果验证了所提控制策略在提高系统响应速度以及抗干扰能力方面的优异性能。  相似文献   

2.
具有柔性关节的轻型机械臂因其自重轻、响应迅速、操作灵活等优点,取得了广泛应用;针对具有柔性关节的机械臂系统的关节空间轨迹跟踪控制系统动力学参数不精确的问题,提出一种结合滑模变结构设计的自适应控制器算法;通过自适应控制的思想对系统动力学参数进行在线辨识,并采用Lyapunov方法证明了闭环系统的稳定性;仿真结果表明,该控制策略保证了机械臂系统对期望轨迹的快速跟踪,具有良好的跟踪精度,系统具有稳定性。  相似文献   

3.
柔性机械手系统为非最小相位系统, 当控制有界时, 该特性阻碍其端点位移渐近跟踪期望轨迹. 本文首先重新定义柔性机械手系统的输出, 通过输入输出线性化, 将系统分解为输入输出子系统和零动态子系统; 然后提出一种用于观测柔性模态导数的鲁棒滑模观测器, 使状态估计达到预期的指标, 解决了柔性模态导数难以获得的问题; 设计积分滑模控制策略, 使输入输出子系统在有限时间收敛到零; 选择适当的控制器参数, 使零动态子系统在 平衡点附近渐近稳定, 从而保证整个系统的渐近稳定. 本文提出的方法设计过程简单, 易于实现. 仿真结果证明了设计的有效性.  相似文献   

4.
参数不确定柔性机械手的终端滑模控制   总被引:2,自引:1,他引:1  
针对参数不确定双臂柔性机械手系统, 提出一种基于遗传算法的终端滑模控制方法, 以实现其末端控制.基于输出重定义方法, 通过输入输出线性化, 将系统分解为输入输出子系统和内部子系统. 设计终端滑模控制策略,使输入输出子系统有限时间内收敛到零, 内部子系统变为零动态子系统; 采用遗传算法优化零动态子系统参数, 使其在平衡点附近渐近稳定. 根据Lyapunov稳定性理论算出末端输出位移的误差范围. 仿真结果证明该方法有效性.  相似文献   

5.
In this paper we extend the work done by Chen et al. (IEEE Trans Ind Electron 47(4):932–938, 2000) which proposed a nonlinear disturbance observer for two-link robot manipulators to n-link robot manipulators. A general form of dynamic equations of serial n-link robot manipulator is considered, and the stability analysis of the proposed observer is performed by using Lyapunov’s direct method. Although it seems that the formulation of disturbance observer is easy to derive, choosing the disturbance observer gain to guarantee stability is really hard. In this paper it is shown that the design parameter can be selected depends on the maximum velocity and physical parameters of robot manipulator to guarantee the global asymptotic stability of the disturbance observer. Using this nonlinear disturbance observer, no accurate dynamic model is required to achieve high precision motion control, because it makes the system robust against internal disturbances such as unmodeled dynamics and external disturbances such as friction in joints. The effectiveness of the proposed observer is investigated by numerical simulation for three-Dofs robot manipulator. In fact, controller with disturbance observer has more superior tracking performance, with a wide range of payloads and in the presence of friction in joints. It is also found that, although the proposed observer is designed for slow varying disturbances, it can estimate rapid time varying disturbances very well.  相似文献   

6.
Flexible robotic manipulators have been the subject of numerous studies in the past few years. Past studies, however, have concentrated on flexible manipulators with only revolute joints. This paper considers the case of a structurally flexible manipulator with prismatic and revolute joints; specifically, an algorithm for controlling a structurally flexible three-degree-of-freedom cylindrical manipulator is presented. The control algorithm involves two steps. Using nonlinear feedback, the equations of motion are first decoupled into three subsystems representing the three rigid degrees of freedom together with their associated ‘flexible equations’, if any. Then, using linear optimal control theory, controllers are designed for the three subsystems independently. Computer simulated results for an example system are presented.  相似文献   

7.
In this paper the control problem for robot manipulators with flexible joints is considered. A reduced-order flexible joint model is constructed based on a singular perturbation formulation of the manipulator equations of motion. The concept of an integral manifold is utilized to construct the dynamics of a slow subsystem. A fast subsystem is constructed to represent the fast dynamics of the elastic forces at the joints. A composite control scheme is developed based on on-line identification of the manipulator parameters which takes into account the effect of certain unmodeled dynamics and parameter variations. Stability analysis of the resulting closed-loop full-order system is presented. Simulation results for a single link flexible joint manipulator are given to illustrate the applicability of the proposed algorithm.  相似文献   

8.
This paper presents the formulation and numerical solution of the dynamic load carrying capacity (DLCC) problem of flexible manipulators. For manipulators under the rigid body assumption, the major limiting factor in determining the maximum allowable load (load mass and load moment of inertia) for a prescribed dynamic trajectory (positions, velocities and accelerations) is the joint actuator capacity. But for a flexible robot, an additional constraint on allowable deformation at the end effector must be imposed because either lighter-weight links or operating at a higher speed could cause unacceptable fluctuations when moving along a trajectory. A Lagrangian assumed mode method was used to model the manipulator and load dynamics, including both joint and deflection motions. The deflection equations are then coupled with robot kinematics to solve for the generalized coordinates. A strategy to determine the DLCC subject to both constraints mentioned above is formulated where the end effector deflection is specified in terms of a series of spherical bounds with a radius equal to the allowable deformation. A general computational procedure for the multiple-link case given arbitrary trajectories is described in detail. Symbolic derivation and simulation by using a PC-based symbolic language MATHEMATICA® was carried out for a two-link planer robot. The results confirmed the necessity of the dual constraints and showed that which constraint is more critical for a given robot and trajectory depends on the required accuracy.  相似文献   

9.
针对传统滑模和传统干扰观测器在机械臂关节位置跟踪中存在的控制输入抖振、需要测量加速度项、应用模型受限等问题,提出一种改进非线性干扰观测器的机械臂自适应反演滑模控制算法。首先,设计改进的非线性干扰观测器进行在线测试,在滑模控制律中加入干扰估计值对可观测的干扰进行补偿;然后选择合适的设计参数,使观测误差指数型收敛;其次,引入反演自适应控制律,对不可观测的干扰进行估计,进一步改善控制系统的跟踪性能;最后,利用李雅普诺夫函数验证了闭环系统的渐近稳定性,并将其应用于机械臂关节位置跟踪。实验结果表明,与传统滑模算法比较,所提控制算法不但加快了系统的响应速度,而且能有效地削弱系统抖振、避免测量加速度项并扩大应用模型使用范围。  相似文献   

10.
A novel controller design for noncollocated flexible one-link manipulator arm tip position control based on variable structure sliding mode control is presented. Using the assumed-mode method, the plant model is derived. The discontinuous control law based on the variable structure system theory for the noncollocated manipulator tip position control is then designed. The position state variables are obtained directly from the inversion of the output submatrix multiplied by the sensor measurements. The velocity state variables are estimated through decoupled estimators-a separate first-order observer for each of the system's modes under consideration. Different sampling periods are used for the estimator and the controller. The performance of the controller is evaluated through a series of simulations, followed by an analysis of the designed control system  相似文献   

11.
In this paper, a neural network approach is presented for the motion control of constrained flexible manipulators, where both the contact force everted by the flexible manipulator and the position of the end-effector contacting with a surface are controlled. The dynamic equations for vibration of flexible link and constrained force are derived. The developed control, scheme can adaptively estimate the underlying dynamics of the manipulator using recurrent neural networks (RNNs). Based on the error dynamics of a feedback controller, a learning rule for updating the connection weights of the adaptive RNN model is obtained. Local stability properties of the control system are discussed. Simulation results are elaborated on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics, which show that the designed controller performs remarkably well.  相似文献   

12.
Active vibration suppression of flexible manipulators is important in many engineering applications, such as robot manipulators and high‐speed flexible mechanisms. The demand for a short settling time and low energy consumption of vibration suppression requires consideration of optimal control. Under a wide range of operating conditions, however, the fixed optimal parameters determined for a control algorithm might not produce the best performance. Therefore, to enhance performance, this paper suggests a lookup table control method for a flexible manipulator. This method can tune itself to the optimal parameters on the basis of initial maximum responses to the controlled system. In this study, a multi‐objective genetic algorithm is used to search for optimal parameters with regard to positive position feedback to the control algorithm. In turn, with the optimal parameters, the multi‐objective functions of the settling time and energy consumption during the vibration control of a flexible manipulator can be minimized. The simulation and experimental results both indicate that the energy consumption can be reduced significantly if the settling time is slightly increased. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
针对光电伺服转台在目标搜索、瞄准时出现角度跟踪误差较大、爬行、抖振等问题,本文结合反步法、自适应滑模、LuGre模型的优势,提出了一种反步自适应积分滑模摩擦补偿控制策略。首先根据光电伺服转台工作环境复杂多变的特点,引入环境因子,建立了改进的LuGre模型,然后在李雅普诺夫框架下分步设计子系统与控制律。引入多个自适应律消除参数不确定对系统的影响,采用双非线性摩擦观测器进行摩擦扰动补偿,采用积分滑模增强系统鲁棒性并减小系统稳态误差。由李雅普诺夫定理证明可知系统全局稳定。仿真结果表明,这种新型控制策略能有效抑制摩擦扰动,提高系统角度跟踪精度,可以满足光电伺服转台的高精度跟踪控制的要求。  相似文献   

14.
本文针对系统中存在的关节摩擦、动力学参数不确定性和外部负载干扰等因素引起的柔性机械臂系统控制性能下降的问题,提出了一种基于扰动和摩擦补偿的非奇异快速终端滑模控制方法(NFTSMC-DE-FC).首先,设计扰动估计器(DE)对系统未知动态参数和负载干扰进行估计.然后,针对扰动估计器不能精确估计的关节摩擦力矩进行辨识.最后,利用滑模控制技术设计非奇异快速终端滑模控制器,并将扰动估计值和摩擦力辨识值以前馈的方式进行补偿,实现对柔性机械臂系统给定参考轨迹跟踪的准确性以及对外界扰动的鲁棒性.值得注意的是,与传统只使用扰动估计器的方法相比,本文考虑到了摩擦力等非线性因素的影响,并利用辨识技术对摩擦力进行辨识,提高了控制精度.利用Lyapunov稳定性定理从理论上证明了所设计的控制器可以保证闭环系统的稳定性.实验结果表明,相较于非奇异快速终端滑模控制方法(NFTSMC)和基于扰动估计器的非奇异快速终端滑模控制方法(NFTSMC-DE),所提方法提高了柔性机械臂系统的轨迹跟踪性能.  相似文献   

15.
针对飞行模拟转台在低速运行时的控制问题进行研究。由于摩擦力矩对飞行模拟转台在低速运行的影响较大,为了使转台在低速运行时具有精确的跟踪能力,采用变结构控制方法设计了控制器,并利用干扰观测器对摩擦力矩进行估计,从而在不增加系统硬件设备及改变转台结构的情况下对摩擦力矩进行补偿。仿真表明,该方法可以使飞行模拟转台在低速情况下具有良好的跟踪能力,干扰观测器可以准确地对摩擦力矩进行估计,并有效地补偿了摩擦力矩的影响,验证了该方法的有效性。  相似文献   

16.
The dynamic equatios of a single link flexible robotic manipulator and the measurements are formulated. The observer and the control law are derived based on optimal control theory. The numerical results of several cases obtained through computer simulation are presented here. The issues of nonlinearity and sampling rate, and the effects of gravity, white noises, and damping are investigated. The feasibility of real-time control of flexible robotic manipulators is discussed.  相似文献   

17.
Experimental results for end-point positioning of multi-link flexible manipulators through end-point acceleration feedback are presented in this article. The advocated controllers are implemented on a two-link flexible arm developed at the Control/Robotics Research Laboratory at Polytechnic University. The advocated approach in this article is based on a two-stage control design. The first stage is a nonlinear (1) feedback linearizing controller corresponding to the rigid body motion of the manipulator. Because this scheme does not utilize any feedback from the end-point motion, significant vibrations are induced at the end effector. To this effect, and to enhance the robustness of the closed-loop dynamics to parameter variations, the inner loop is augmented with an outer loop based on a linear output LQR design that utilizes an end-point acceleration feedback. The forearm of the manipulator is significantly more flexible as compared with the upper arm. Experimental and simulation results validate the fact that the end-effector performance is significantly better with the proposed (1) feedback linearizing control as compared with the linear independent joint PD control. In addition, the nonlinear control offers other advantages in terms of smaller and smoother actuator torques and reducing the effects of nonlinearities. Close conformation between simulation and experimental results validates the accuracy of the model.  相似文献   

18.
《Applied Soft Computing》2008,8(1):778-787
This paper presents a fuzzy adaptive control suitable for motion control of multi-link robot manipulators with structured and unstructured uncertainties. When joint velocities are available, full state fuzzy adaptive feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. In the proposed control scheme, we need not derive the linear formulation of robot dynamic equation and tune the parameters. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the uncertainties terms. The proposed controller is robust against uncertainties and external disturbance. Further, it is shown that required stability conditions, in both cases, can be formulated as LMI problems and solved using dedicated software. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.  相似文献   

19.
为了提高三相四开关容错逆变器驱动的永磁同步电机调速系统的性能,提出了调速系统双闭环预测控制策略。在转速环中设计了带扰动补偿的模型预测控制方法,通过离散扰动观测器估计负载扰动并进行前馈补偿,与模型预测速度控制相结合得到[q]轴电流环的期望给定值。在电流环中设计了基于离散滑模的有限控制集模型预测控制方法。通过与传统PI、FCS-MPC方法进行仿真对比,验证了该方法在空载启动、给定转速突变以及存在负载扰动、参数变化时,可使容错逆变器驱动的永磁同步电机调速系统具有更好的动态响应能力和鲁棒性。  相似文献   

20.
A nonsingular fast terminal sliding mode (NFTSM) controller is designed by incorporating the variable gain neural network (NN) observer, which is utilized to guarantee motor speed synchronization and load position tracking of dual‐motor driving servo systems. By designing the variable gain NN observer, the states and uncertain nonlinearities of servo systems are estimated with fast convergence rate and small steady‐state error, where the effects from external disturbance are suppressed as well. Based on the estimated states, the cross‐coupling synchronization strategy and NFTSM tracking scheme are designed to achieve the rapid speed synchronization and precise load tracking, where the NNs are introduced to approximate and compensate friction nonlinearities. In particular, a novel nonlinear synchronization factor characterizing the degree of speed synchronization is proposed to achieve switching between synchronization control and tracking control, which is proven to deal with the coupling problem of synchronization and tracking. Finally, the comparative simulations and experiments are included to verify the reliability and effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号