首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Wang  D Liu    P R Reeves 《Journal of bacteriology》1996,178(9):2598-2604
We previously showed that the product of the wbaP gene of Salmonella enterica serovar Typhimurium has two functions: it is involved in the first step of O-antigen synthesis (the galactosyltransferase [GT] function) and in a later step (the T function), first thought to be the flipping of the O-antigen subunit on undecaprenyl pyrophosphate from the cytoplasmic face to the periplasmic face of the cytoplasmic membrane. We now locate two wbaP(T) mutations within the first half of the wbaP gene by sequencing. Both mutants retain GT activity, although one was a frameshift mutation resulting in a stop codon 10 codons after the frameshift to give an open reading frame containing only 138 of the 476 codons in WbaP. We also show that there is a secondary translation starting within the wbaP gene resulting in the synthesis of a polypeptide with GT activity. These results indicate that the N- and C-terminal halves of WbaP are the T and GT functional domains, respectively. We now propose that the T block operates prior to the flippase function, probably at the release of undecaprenyl pyrophosphate-linked galactose from WbaP.  相似文献   

2.
We have used in vitro mutagenesis and gene replacement to construct five new cold-sensitive mutations in TUB2, the sole gene encoding beta-tubulin in the yeast Saccharomyces cerevisiae. These and one previously isolated tub2 mutant display diverse phenotypes that have allowed us to define the functions of yeast microtubules in vivo. At the restrictive temperature, all of the tub2 mutations inhibit chromosome segregation and block the mitotic cell cycle. However, different microtubule arrays are present in these arrested cells depending on the tub2 allele. One mutant (tub2-401) contains no detectable microtubules, two (tub2-403 and tub2-405) contain greatly diminished levels of both nuclear and cytoplasmic microtubules, one (tub2-104) contains predominantly nuclear microtubules, one (tub2-402) contains predominantly cytoplasmic microtubules, and one (tub2-404) contains prominent nuclear and cytoplasmic microtubule arrays. Using these mutants we demonstrate here that cytoplasmic microtubules are necessary for nuclear migration during the mitotic cell cycle and for nuclear migration and fusion during conjugation; only those mutants that possess cytoplasmic microtubules are able to perform these functions. We also show that microtubules are not required for secretory vesicle transport in yeast; bud growth and invertase secretion occur in cells which contain no microtubules.  相似文献   

3.
In previous papers we described an extra recombination mechanism in T4 phage, which contributed to general recombination only when particular mutations were used as geneticmarkers (high recombination or HR markers), whereas it was practically inactive towards other rIIB mutations (low recombination or LR markers). This marker-dependent recombination pathway was identified as a repair of mismatches in recombination heteroduplexes. We suggested that the first step in this pathway, recognition and incision of the mismatch, is performed by endonuclease VII (endo VII) encoded by the T4 gene 49. In the present paper, we tested this hypothesis in vivo. We used an experimental model system that combines site-specific double-strand breaks with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants. We compared recombination of homoallelic HR and LR markers in the S17 and S17 E727 background (amber mutations in the uvsX and in the uvsX and 49 genes, respectively). In S17-crosses, the HR and LR markers retain their respective high-recombination and low-recombination behavior. In S17 E727-crosses, however, the HR and LR markers show no difference in the recombination frequency and both behave as LR markers. We conclude that endo VII is the enzyme that recognizes mismatches in recombinational heteroduplexes and performs their incision. This role for endo VII was suggested previously from biochemical studies, but this is its first in vivo demonstration.  相似文献   

4.
We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R → T), 313(R → T), 315(R → P), and 329(R → T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R → T), 318(K → T), and 324(K → T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.  相似文献   

5.
By fluorescence resonance energy transfer, we have previously demonstrated that upon anti-CD3 mAb-mediated activation of a murine T cell hybridoma expressing human CD4, CD4 moves into close association with the TCR/CD3 complex. It was shown that this association between CD4 and the TCR/CD3 complex was dependent upon the presence of an intact CD4 cytoplasmic domain. We have now expressed, in a murine T cell hybridoma, mutated forms of CD4 containing cysteine to serine point mutations at positions 420, 422, or 430. The mutations at positions 420 and 422, but not 430, abolish association with p56lck. By using fluorescence resonance energy transfer, we demonstrate that mutations of CD4 which fail to interact with p56lck are unable to associate with the TCR/CD3 complex under conditions in which wild-type CD4 and the 430 mutant CD4 do associate with the TCR/CD3 complex. In addition, these mutants have a diminished response to CD4-dependent stimuli. We conclude that the association between CD4 and the TCR/CD3 complex during T cell activation plays an important role in CD4-dependent responsiveness and this association requires the interaction of CD4 with p56lck. These results also suggest that a substrate for p56lck may be expressed in the TCR/CD3 complex.  相似文献   

6.
The human T-cell leukemia virus type 1 (HTLV-1) transmembrane glycoprotein has a 24-amino-acid cytoplasmic domain whose function in the viral life cycle is poorly understood. We introduced premature-stop mutations and 18 single-amino-acid substitutions into this domain and studied their effects on cell-to-cell transmission of the virus. The results show that the cytoplasmic domain is absolutely required for cell-to-cell transmission of HTLV-1, through amino acids which cluster in a Y-S-L-I tyrosine-based motif. The transmission defect in two motif mutants did not result from a defect in glycoprotein incorporation or fusion. It appears that the Y-S-L-I tyrosine-based motif of the HTLV-1 glycoprotein cytoplasmic domain has multiple functions, including involvement in virus transmission at a postfusion step.  相似文献   

7.
The Neurospora VS ribozyme differs from other small, naturally occurring ribozymes in that it recognizes for trans cleavage or ligation a substrate that consists largely of a stem-loop structure. We have previously found that cleavage or ligation by the VS ribozyme requires substantial rearrangement of the secondary structure of stem-loop I, which contains the cleavage/ligation site. This rearrangement includes breaking the top base-pair of stem-loop I, allowing formation of a kissing interaction with loop V, and changing the partners of at least three other base-pairs within stem-loop I to adopt a conformation termed shifted. In the work presented, we have designed a binding assay and used mutational analysis to investigate the contribution of each of these structural changes to binding and ligation. We find that the loop I-V kissing interaction is necessary but not sufficient for binding and ligation. Constitutive opening of the top base-pair of stem-loop I has little, if any, effect on either activity. In contrast, the ability to adopt the shifted conformation of stem-loop I is a major determinant of binding: mutants that cannot adopt this conformation bind much more weakly than wild-type and mutants with a constitutively shifted stem-loop I bind much more strongly. These results implicate the adoption of the shifted structure of stem-loop I as an important process at the binding step in the VS ribozyme reaction pathway. Further investigation of features near the cleavage/ligation site revealed that sulphur substitution of the non-bridging phosphate oxygen atoms immediately downstream of the cleavage/ligation site, implicated in a putative metal ion binding site, significantly altered the cleavage/ligation equilibrium but did not perturb substrate binding significantly. This indicates that the substituted oxygen atoms, or an associated metal ion, affect a step that occurs after binding and that they influence the rates of cleavage and ligation differently.  相似文献   

8.
9.
ABSTRACT. Tetrahymena thermophila possesses a regulated secretory pathway in which mucin proteins are stored in dense-core granules, called mucocysts. Exocytosis-defective mutants exist that fail to secrete mucin in response to secretagogues. Four of the mutants (SB281, SB283, SB285 and SB715) appear to be blocked at different steps of the regulated secretory pathway. SB281 and SB285 accumulate mucin proteins in heterogeneous cytoplasmic organelles which have not yet been identified; SB283 makes mucocyst-like structures but they contain no immunologically identifiable 80-kDa or 50-kDa mucin proteins; and SB715 has more than normal amounts of immature and undocked mucocysts. The organelles that accumulate in exocytosis-defective mutants could be either normal intermediates in the biosynthetic pathway or aberrant structures that form as a result of the mutations. We have used conjugation rescue to analyze steps in the biogenesis of exocytosis-competent mucocysts and to identify functional intermediates. The cytoplasmic organelles that accumulate in SB281 appear to be unidentified biosynthetic intermediates, and the defect is in a cytosolic protein essential for mucocyst maturation. The organelles which accumulate in the other mutants are likely biosynthetic, but their mutations are in proteins which are labile or not free to diffuse into the mutant conjugant.  相似文献   

10.
We isolated mutants of Escherichia coli in which the maltose-binding protein (MBP) is no longer required for growth on maltose as the sole source of carbon and energy. These mutants were selected as Mal+ revertants of a strain which carries a deletion of the MBP structural gene, malE. In one class of these mutants, maltose is transported into the cell independently of MBP by the remaining components of the maltose system. The mutations in these strains map in either malF or malG. These genes code for two of the cytoplasmic membrane components of the maltose transport system. In some of the mutants, MBP actually inhibits maltose transport. We demonstrate that these mutants still transport maltose actively and in a stereospecific manner. These results suggest that the malF and malG mutations result in exposure of a substrate recognition site that is usually available only to substrates bound to MBP.  相似文献   

11.
Summary The product of gene 32 of bacteriophage T4 is a single-stranded DNA binding protein involved in T4 DNA replication, recombination and repair. Functionally differentiated regions of the gene 32 protein have been described by protein chemistry. As a preliminary step in a genetic dissection of these functional domains, we have isolated a large number of missense mutants of gene 32. Mutant isolation was facilitated by directed mutagenesis and a mutant bacterial host which is unusually restrictive for missense mutations in gene 32. We have isolated over 100 mutants and identified 22 mutational sites. A physical map of these sites has been constructed and has shown that mutations are clustered within gene 32. The possible functional significance of this clustering is considered.  相似文献   

12.
Using a K562 cell transfection model, we have previously described a novel relationship between the integrins alpha v beta 3 and alpha 5 beta 1. alpha v beta 3 ligation was able to inhibit alpha 5 beta 1- mediated phagocytosis without effect on alpha 5 beta 1-mediated adhesion. The alpha v beta 3-dependent inhibition apparently required a signal transduction cascade as it was reversed by inhibitors of serine/threonine kinases. Now, we have studied the mechanisms of signal transduction in this system and have found that the beta 3 cytoplasmic tail is both necessary and sufficient for initiation of the signal leading to inhibition of alpha 5 beta 1 phagocytosis. Ligation of integrin-associated protein (IAP), which has been implicated in alpha v beta 3 signal transduction, mimics the effects of alpha v beta 3 ligation only when the beta 3 integrin with an intact cytoplasmic tail is present. Although fibronectin-mediated phagocytosis requires the high affinity conformation of alpha 5 beta 1, ligation of alpha v beta 3/IAP does not prevent acquisition of this high affinity state. We conclude that alpha v beta 3/IAP ligation initates a signal transduction cascade, dependent upon the beta 3 cytoplasmic tail, which inhibits the phagocytic function of alpha 5 beta 1 at a step subsequent to modulation of integrin affinity.  相似文献   

13.
The nucleotide sequence of the mitochondrial DNA (mtDNA) in the region coding for the 3' end of the large rRNA has been determined for two human cell lines bearing independent cytoplasmic chloramphenicol-resistant (CAP-r) mutations. Comparison of the sequences of these two phenotypically different CAP-r mutants with their CAP-sensitive (CAP-s) parental cell lines has revealed a single base change for each in a region which is highly conserved among species. One CAP-r mutation is associated with an A to G transition on the coding strand while the second contains a G to T transversion 52 nucleotides away. Comparable sequence changes in this region had previously been found for mouse and yeast cell mitochondrial CAP-r mutants. Thus, changes in the large rRNA gene eliminate the inhibition of the ribosome by CAP and different nucleotide changes may result in variations in the drug-r phenotype.  相似文献   

14.
ATP-dependent DNA ligases catalyze the sealing of 5′-phosphate and 3′-hydroxyl termini at DNA nicks by means of a series of three nucleotidyl transfer steps. Here we have analyzed by site-directed mutagenesis the roles of conserved amino acids of Chlorella virus DNA ligase during the third step of the ligation pathway, which entails reaction of the 3′-OH of the nick with the DNA–adenylate intermediate to form a phosphodiester and release AMP. We found that Asp65 and Glu67 in nucleotidyltransferase motif III and Glu161 in motif IV enhance the rate of step 3 phosphodiester formation by factors of 20, 1000 and 60, respectively. Asp29 and Arg32 in nucleotidyltransferase motif I enhance the rate of step 3 by 60-fold. Gel shift analysis showed that mutations of Arg32 and Asp65 suppressed ligase binding to a pre-adenylated nick, whereas Asp29, Glu67 and Glu161 mutants bound stably to DNA–adenylate. We infer that Asp29, Glu67 and Glu161 are involved directly in the step 3 reaction. In several cases, the effects of alanine or conservative mutations on step 3 were modest compared to their effects on the composite ligation reaction and individual upstream steps. These results, in concert with available crystallographic data, suggest that the active site of DNA ligase is remodeled during the three steps of the pathway and that some of the catalytic side chains play distinct roles at different stages.  相似文献   

15.
It is known that rectification of currents through the inward rectifier K(+) channel (Kir) is mainly due to blockade of the outward current by cytoplasmic Mg(2+) and polyamines. Analyses of the crystal structure of the cytoplasmic region of Kir2.1 have revealed the presence of both negatively (E224, D255, D259, and E299) and positively (R228 and R260) charged residues on the wall of the cytoplasmic pore of Kir2.1, but the detail is not known about the contribution of these charged residues, the positive charges in particular, to the inward rectification. We therefore analyzed the functional significance of these charged amino acids using single/double point mutants in order to better understand the structure-based mechanism underlying inward rectification of Kir2.1 currents. As a first step, we used two-electrode voltage clamp to examine inward rectification in systematically prepared mutants in which one or two negatively or positively charged amino acids were neutralized by substitution. We found that the intensity of the inward rectification tended to be determined by the net negative charge within the cytoplasmic pore. We then used inside-out excised patch clamp recording to analyze the effect of the mutations on blockade by intracellular blockers and on K(+) permeation. We observed that a decrease in the net negative charge within the cytoplasmic pore reduced both the susceptibility of the channel to blockade by Mg(2+) or spermine and the voltage dependence of the blockade. It also reduced K(+) permeation; i.e., it decreased single channel conductance, increased open-channel noise, and strengthened the intrinsic inward rectification in the total absence of cytoplasmic blockers. Taken together, these data suggest that the negatively charged cytoplasmic pore of Kir electrostatically gathers cations such as Mg(2+), spermine, and K(+) so that the transmembrane pore is sufficiently filled with K(+) ions, which enables strong voltage-dependent blockade with adequate outward K(+) conductance.  相似文献   

16.
The light-driven chloride pump halorhodopsin (HR), a halobacterial retinal protein, was studied by comparing wild type with specific mutants. Changes of conserved arginine and threonine residues in the transmembrane regions could be classified in two categories: in the extracellular half of the molecule, mutations influence anion uptake and binding. R108 mutations abolish all anion effects previously attributed to two distinct binding sites and change the characteristic photochemistry. Neutral residues at position 108 completely inactivate the pump. T111 increases the affinity of this anion binding site without being essentially important. In the photochemical cycles of the mutants T111V and Q105E, a red-shifted absorbing intermediate is enriched indicating retarded anion uptake. On the cytoplasmic side, mutations do not change anion binding properties of the unphotolyzed protein, but slow down anion release thereby reducing the chloride transport activity and the photocycling rate. The lowest activity is found for T203V, while R200 mutations have weaker effects. Thus, in the symmetrically arranged pairs R108/T111 and T203/R200, threonine and arginine play different roles, reflecting high affinity anion uptake by the former and effective anion release catalyzed by the latter residues. A model for the anion transport mechanism in HR is suggested comprising the specific functions of channel-lining residues.  相似文献   

17.
The glycoproteins I and E of pseudorabies virus are important mediators of cell-to-cell spread and virulence in all animal models tested. Although these two proteins form a complex with one another, ascribing any function to the individual proteins has been difficult. We have shown previously, using nonsense mutations, that the N-terminal ectodomain of the gE protein is sufficient for gE-mediated transsynaptic spread whereas the cytoplasmic domain of the protein is required for full expression of virulence. These same studies demonstrated that the cytoplasmic domain of gE is also required for endocytosis of the protein. In this report, we describe the construction of viruses with nonsense mutations in gI that allowed us to determine the contributions of the gI cytoplasmic domain to protein expression as well as virus neuroinvasion and virulence after infection of the rat eye. We also constructed double mutants with nonsense mutations in both gE and gI so that the contributions of both the gE and gI cytoplasmic domains could be determined. We observed that the gI cytoplasmic domain is required for efficient posttranslational modification of the gI protein. The gE cytoplasmic domain has no effect on gE posttranslational glycosylation. In addition, we found that infection of all gE-gI-dependent anterograde circuits projecting from the rat retina requires both ectodomains and at least one of the cytoplasmic domains of the proteins. The gI cytoplasmic domain promotes transsynaptic spread of virus better than the gE cytoplasmic domain. Interestingly, both gE and gI cytoplasmic tails are required for virulence; lack of either one or both results in an attenuated infection. These data suggest that gE and gI play differential roles in mediating directional neuroinvasion of the rat; however, the gE and gI cytoplasmic domains most likely function together to promote virulence.  相似文献   

18.
Thermosensitive mutants of Bacillus subtilis deficient in peptidoglycan synthesis were screened for mutations in the meso-diaminopimelate (LD-A2pm) metabolic pathway. Mutations in two out of five relevant linkage groups, lssB and lssD, were shown to induce, at the restrictive temperature, a deficiency in LD-A2pm synthesis and accumulation of UDP-MurNAc-dipeptide. Group lssB is heterogeneous; it encompasses mutations that confer deficiency in the deacylation of N-acetyl-LL-A2pm and accumulation of this precursor. Accordingly, these mutations are assigned to the previously identified locus dapE. Mutations in linkage group lssD entail a thermosensitive aspartokinase 1. Therefore, they are most likely to affect the structural gene of this enzyme, which we propose to designate dapG. Mutation pyc-1476, previously reported to affect the pyruvate carboxylase, was shown to confer a deficiency in aspartokinase 1, not in the carboxylase, and to belong to the dapG locus, dapG is closely linked to spoVF, the putative gene of dipicolinate synthase. In conclusion, mutations affecting only two out of eight steps known to be involved in LD-A2pm synthesis were uncovered in a large collection of thermosensitive mutants obtained by indirect selection. We propose that this surprisingly restricted distribution of the thermosensitive dap mutations isolated so far is due to the existence, in each step of the pathway, of isoenzymes encoded by separate genes. The biological role of different aspartokinases was investigated with mutants deficient in dapE and dapG genes. Growth characteristics of these mutants in the presence of various combinations of aspartate family amino acids allow a reassessment of a metabolic channel hypothesis, i.e. the proposed existence of multienzyme complexes, each specific for a given end product.  相似文献   

19.
Janz JM  Farrens DL 《Biochemistry》2001,40(24):7219-7227
We report an effort to engineer a functional, maximally blue-wavelength-shifted version of rhodopsin. Toward this goal, we first constructed and assayed a number of previously described mutations in the retinal binding pocket of rhodopsin, G90S, E122D, A292S, and A295S. Of these mutants, we found that only mutants E122D and A292S were like the wild type (WT). In contrast, mutant G90S exhibited a perturbed photobleaching spectrum, and mutant A295S exhibited decreased ability to activate transducin. We also identified and characterized a new blue-wavelength-shifting mutation (at site T118), a residue conserved in most opsin proteins. Interestingly, although residue T118 contacts the critically important C9-methyl group of the retinal chromophore, the T118A mutant exhibited no significant perturbation other than the blue-wavelength shift. In analyzing these mutants, we found that although several mutants exhibited different rates of retinal release, the activation energies of the retinal release were all approximately 20 kcal/mol, almost identical to the value found for WT rhodopsin. These latter results support the theory that chemical hydrolysis of the Schiff base is the rate-limiting step of the retinal release pathway. A combination of the functional blue-wavelength-shifting mutations was then used to generate a triple mutant (T118A/E122D/A292S) which exhibited a large blue-wavelength shift (absorption lambda(max) = 453 nm) while exhibiting minimal functional perturbation. Mutant T118A/E122D/A292S thus offers the possibility of a rhodopsin protein that can be worked with and studied using more ambient lighting conditions, and facilitates further study by fluorescence spectroscopy.  相似文献   

20.
Thr(373), Lys(374), Asp(375), and Lys(260) were chosen as site-directed mutagenesis targets within porcine NADP-dependent isocitrate dehydrogenase based on structurally corrected sequence alignment among prokaryotic and eukaryotic NADP-isocitrate dehydrogenases. Wild-type and all mutant enzymes were expressed in Escherichia coli and purified to homogeneity. These mutations do not alter the secondary structure or dimerization state of the mutants. The D375N and K260Q mutants exhibit, respectively, a 15- and 28-fold increase in K(m) for NADP, along with marked decreases in V(max) as compared to wild-type enzyme. In contrast, replacing Lys(374), which was previously proposed to contribute to apparent coenzyme affinity, does not change the enzyme's kinetic parameters. T373S exhibits similar kinetic parameters to those of wild-type while T373A and T373V mutations reduce the V(max) values of the resulting enzymes to 1 and 20%, respectively of that of wild-type. We conclude that a hydroxyl group at position 373 is required for effective enzyme function and that Asp(375) and Lys(260) are critical amino acids contributing to coenzyme affinity as well as catalysis by porcine NADP-isocitrate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号