首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that females in the proestrus stage of the reproductive cycle maintain organ functions after trauma-hemorrhage. However, it remains unknown whether the female reproductive cycle is an important variable in the regulation of lung injury after trauma-hemorrhage and, if so, whether the effect is mediated via upregulation of heme oxygenase (HO)-1. To examine this, female Sprague-Dawley rats during diestrus, proestrus, estrus, and metestrus phases of the reproductive cycle or 14 days after ovariectomy underwent soft tissue trauma and then hemorrhage (mean blood pressure 40 mmHg for 90 min followed by fluid resuscitation). At 2 h after trauma-hemorrhage or sham operation, lung myeloperoxidase (MPO) activity and intercellular adhesion molecule (ICAM)-1, cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-3, and HO-1 protein levels were measured. Plasma 17beta-estradiol concentration was also determined. The results indicated that trauma-hemorrhage increased lung MPO activity and ICAM-1, CINC-1, and CINC-3 levels in ovariectomized females. These parameters were found to be similar to sham-operated animals in proestrus female rats subjected to trauma-hemorrhage. Lung HO-1 protein level in proestrus females was increased significantly compared with female rats subjected to trauma-hemorrhage during diestrus, estrus, and metestrus phases of the reproductive cycle and ovariectomized rats. Furthermore, plasma 17beta-estradiol level was highest in proestrus females. Administration of the HO inhibitor chromium mesoporphyrin prevented the attenuation of shock-induced lung damage in proestrus females. Thus these findings suggest that the female reproductive cycle is an important variable in the regulation of lung injury following trauma-hemorrhage and that the protective effect in proestrus females is likely mediated via upregulation of HO-1.  相似文献   

2.
Cutaneous burn trauma causes cardiac contraction and relaxation defects, but the mechanism is unclear. Previous studies suggest that burn-related changes in myocyte handling of calcium may play an important role in postburn cardiac dysfunction. With the use of a high dissociation constant (K(d)) calcium indicator 1,2-bis(2-amino-5,6-difluorophenoxy)-ethane-N,N,N',N'-tetraacetic acid (TF-BAPTA) and (19)F NMR spectroscopy, this study examined the correlation between the changes in cytosolic free calcium concentration ([Ca(2+)](i)) and cardiac function after burn trauma. Sprague-Dawley rats were given scald burn (over 40% of the total body surface area) or sham burn. Twenty-four hours later, the hearts were excised and perfused by the Langendorff method with a modified phosphate-free Krebs-Henseleit bicarbonate buffer. Left ventricular (LV) developed pressure (LVDP), calculated from peak systolic LV pressure and LV end-diastolic pressure, was assessed through a catheter attached to an intraventricular balloon. At the same time, (31)P and (19)F NMR spectroscopy was performed before and after TF-BAPTA loading. LVDP measured in hearts from burned rats was <40% than that measured in hearts from sham burn rats (65 +/- 6 vs. 110 +/- 12 mmHg, P < 0.01); [Ca(2+)](i) was increased fourfold in hearts from the burned group compared with that measured in the sham burn group (0.807 +/- 0.192 vs. 3.891 +/- 0.929 microM). Loading TF-BAPTA in hearts transiently decreased LVDP by 15%. Phosphocreatine-to-P(i) ratio decreased, but ATP and intracellular pH remained unchanged by either TF-BAPTA loading or burn trauma. In conclusion, burn trauma impaired cardiac contractility, and this functional defect was paralleled by a significant rise in [Ca(2+)](i) in the heart.  相似文献   

3.
Although immune functions in proestrus females are maintained after hemorrhage as opposed to decreased responses in males, it remains unknown whether such a sexual dimorphism also exists with regard to cardiovascular and hepatocellular functions under those conditions. To study this, male and female (estrus and proestrus) rats underwent a 5-cm midline laparotomy and were bled to and maintained at a mean blood pressure of 40 mmHg until 40% of the maximal bleed-out volume was returned in the form of Ringer lactate (RL). Rats were then resuscitated with four times the shed blood volume with RL. At 24 h thereafter, cardiac index; heart performance; hepatocellular function; and plasma estradiol, testosterone, and prolactin levels were measured. Cardiovascular and hepatocellular functions were depressed in males and estrus females (P < 0.05) but were not depressed in proestrus females after resuscitation. Plasma estradiol and prolactin levels were highest in proestrus females (P < 0.05), whereas males had high testosterone and the lowest estradiol levels (P < 0.05). Thus the female reproductive cycle is an important variable in the response to hemorrhage. Because low testosterone and high estradiol and prolactin levels appear to be beneficial for organ functions after trauma-hemorrhage, antagonism of testosterone receptors and/or increases in estradiol and prolactin levels in males and estrus females, respectively, may be novel approaches for improving organ functions under such conditions.  相似文献   

4.
Oxytocin (OT) and arginine-8-vasopressin (AVP) were measured by radioimmunoassay in micropunched hypothalamic neurosecretory nuclei of estrous cycling female Sprague-Dawley rats. In the paraventricular nucleus (PVN): the concentration (pg/microgram protein) of OT was significantly higher in rats in diestrus than during proestrus, estrus, or metestrus, while the concentration during metestrus was significantly greater than in proestrus and estrus; the concentration of AVP was significantly lower in animals in estrus than during the other three stages; because the paraventricular OT levels dropped before proestrus, the AVP/OT ratio was significantly greater in animals in proestrus than in diestrus, metestrus, and estrus. In the supraoptic nucleus (SON) a similar trend was noted: the concentration of OT was highest during diestrus, and AVP was lowest during estrus, though neither was significantly different from other stages. Because the OT and AVP cycles in the SON were asynchronous, the ratio of AVP to OT was significantly higher in proestrus than in metestrus or diestrus and significantly greater in estrus than during diestrus. In contrast to these two areas, peptide concentrations did not vary significantly across the estrous cycle in other sites of nonapeptide synthesis, i.e. the anterior commissural nucleus (ACN) and the suprachiasmatic nuclei (SCN).  相似文献   

5.
In the heart, thermal injury activates a group of intracellular cysteine proteases known as caspases, which have been suggested to contribute to myocyte inflammation and dyshomeostasis. In this study, Sprague-Dawley rats were given either a third-degree burn over 40% total body surface area plus conventional fluid resuscitation or sham burn injury. Experimental groups included 1) sham burn given vehicle, 400 microl DMSO; 2) sham burn given Q-VD-OPh (6 mg/kg), a highly specific and stable caspase inhibitor, 24 and 1 h prior to sham burn; 3) burn given vehicle, DMSO as above; 4) burn given Q-VD-OPh (6 mg/kg) 24 and 1 h prior to burn. Twenty-four hours postburn, hearts were harvested and studied with regard to myocardial intracellular sodium concentration, intracellular pH, ATP, and phosphocreatine (23Na/31P nuclear magnetic resonance); myocardial caspase-1, -3,and -8 expression; myocyte Na+ (fluorescent indicator, sodium-binding benzofurzan isophthalate); myocyte secretion of TNF-alpha, IL-1beta, IL-6, and IL-10; and myocardial performance (Langendorff). Burn injury treated with vehicle alone produced increased myocardial expression of caspase-1, -3, and -8, myocyte Na+ loading, cytokine secretion, and myocardial contractile depression; cellular pH, ATP, and phosphocreatine were stable. Q-VD-OPh treatment in burned rats attenuated myocardial caspase expression, prevented burn-related myocardial Na+ loading, attenuated myocyte cytokine responses, and improved myocardial contraction and relaxation. The present data suggest that signaling through myocardial caspases plays a pivotal role in burn-related myocyte sodium dyshomeostasis and myocyte inflammation, perhaps contributing to burn-related contractile dysfunction.  相似文献   

6.
This study examined the of LH and prolactin in the control of corpus luteum function during 4-day cycles in the rat. Bromocriptine (BRC) treatment was performed on proestrus or/and estrus morning that means before or after the preovulatory release of LH. This caused complete blood prolactin depression from the time of injection until diestrus 1 afternoon. This decrease in blood prolactin concentration was associated with a rise in the tonic level of LH secretion in those females which received BRC as soon as on proestrus. We first observed that injection on the morning of proestrus of doses of BRC capable of blunting prolactin secretion on proestrus afternoon did not significantly impair the preovulatory release of LH and did not prevent ovulation occurring during the following night. The life span of the corpora lutea edified from ovarian follicles rupturing before or under BRC administration did not exceed that of those formed under physiological circumstances since 4-day cycles culminating in ovulation constantly took place in all the treated animals whatever the time of BRC injection. To determine the pattern of luteal activity in the absence of prolactin secretion, we measured blood progesterone concentration from estrus until late diestrus in female rats injected with BRC on proestrus and/or estrus at 1100 h. The initiation of the function of corpus luteum on estrus and the achievement of its full activity on diestrus 1 did not appear to be affected by BRC. By contrast the level of blood progesterone declined more rapidly on the morning of diestrus 2 in BRC-treated than in control females. The capacity for autonomous progesterone secretion by corpus luteum of the cycle was discussed in the light of previous and present observations.  相似文献   

7.
In women, sympathoexcitation during static handgrip exercise is reduced during the follicular phase of the ovarian cycle compared with the menstrual phase. Previous animal studies have demonstrated that estrogen modulates the exercise pressor reflex, a sympathoexcitatory mechanism originating in contracting skeletal muscle. The present study was conducted in female rats to determine whether skeletal muscle contraction-evoked reflex sympathoexcitation fluctuates with the estrous cycle. The estrous cycle was judged by vaginal smear. Plasma concentrations of estrogen were significantly (P < 0.05) higher in rats during the proestrus phase of the estrus cycle than those during the diestrus phase. In decerebrate rats, either electrically induced 30-s continuous static contraction of the hindlimb muscle or 30-s passive stretch of Achilles tendon (a maneuver that selectively stimulates mechanically sensitive muscle afferents) evoked less renal sympathoexcitatory and pressor responses in the proestrus animals than in the diestrus animals. Renal sympathoexcitatory response to 1-min intermittent (1- to 4-s stimulation to relaxation) bouts of static contraction was also significantly less in the proestrus rats than that in the diestrus rats. In ovariectomized female rats, 17β-estradiol applied into a well covering the dorsal surface of the lumbar spinal cord significantly reduced skeletal muscle contraction-evoked responses. These observations demonstrate that the exercise pressor reflex function and its mechanical component fluctuate with the estrous cycle in rats. Estrogen may cause these fluctuations through its attenuating effects on the spinal component of the reflex arc.  相似文献   

8.
Several studies have demonstrated that gonadal hormones show significant effects on the brain and signaling pathways of effector organs/cells that respond to neurotransmitters. Since little information is available concerning the impact of male and female gonadal hormones on the renal and peripheral sympathetic system, the objective of this study was to further assess whether and how the renal content and plasma concentration of catecholamines are influenced by gender and the estrous cycle in rats. To achieve this, males Wistar rats were divided into 4 groups: (i) sham (i.e., control), (ii) gonadectomized, (iii) gonadectomized and nandrolone decanoate replacement at physiological levels or (iv) gonadectomized and nandrolone decanoate replacement at high levels. Female Wistar rats were divided into 6 groups: (i) ovariectomized (OVX), (ii) estrogen replacement at physiological levels and (iii) estrogen replacement at at high levels, (iv) progesterone replacement at physiological levels and (v) progesterone replacement at at high levels, and (vi) sham. The sham group was subdivided into four subgroups: (i) proestrus, (ii) estrus, (iii) metaestrus, and (iv) diestrus. Ten days after surgery, the animals were sacrificed and their plasma and renal catecholamine levels measured for intergroup comparisons. Gonadectomy led to an increase in the plasma catecholamine concentration in females, as well as in the renal catecholamine content of both male and female rats. Gonadectomized males also showed a lower level of plasma catecholamine than the controls. The urinary flow, and the fractional excretion of sodium and chloride were significantly increased in gonadectomized males and in the OVX group when compared with their respective sham groups.  相似文献   

9.
Immune responses in proestrus females are not altered after trauma-hemorrhage, whereas they are markedly depressed in males. Elevated levels of female sex steroids appear to be responsible for maintaining immune responses but it remains unknown, whether estrogen per se is responsible. To study this, proestrus female C3H/HeN mice were subjected to laparotomy (i.e., soft tissue trauma) and hemorrhagic shock (35+/-5 mmHg for 90 min, then resuscitated) or sham operation and received the estrogen receptor antagonist EM-800 or vehicle during resuscitation. Two hours following trauma-hemorrhage, splenocyte proliferation, IL-2, IL-3, IFN-gamma release, and splenic macrophage IL-6 release was maintained in vehicle-treated females. In EM-800-treated females, however, these immune parameters were significantly depressed. Following trauma-hemorrhage, Kupffer cell TNF-alpha release and circulating TNF-alpha were increased only in EM-800-treated females. These findings indicate that the ability of proestrus females to maintain immune function following trauma-hemorrhage is estrogen-dependent and mediated via estrogen receptors.  相似文献   

10.
Stress can change the responses to catecholamines in many tissues. The aim of this study was to investigate the influence of the estrous cycle on the sensitivity of right atria to noradrenaline in female rats subjected to acute swimming stress. Female Wistar rats in proestrus, estrus, metestrus or diestrus were submitted to a 50 min-swimming session. Immediately after the exercise, the rats were killed and their right atria were mounted for isometric recording of the spontaneous beating rate. Concentration-effect curves to noradrenaline were obtained before and after the inhibition of neuronal uptake with phenoxybenzamine (10 microM) and of extraneuronal uptake with estradiol (5 microM). Acute swimming stress did not change the right atrial sensitivity to noradrenaline in rats in estrus, metestrus and diestrus. However, swimming stress produced supersensitivity to noradrenaline in proestrus (pD(2) control: 7.14 +/- 0.03 vs. pD(2) swimming: 7.55 +/- 0.04; p<0.05). This supersensitivity was still observed after uptake inhibition. When catecholamine uptake was inhibited, the concentration-effect curve to noradrenaline was shifted to the left 2.5-fold in the proestrus control group and 1.7-fold in the proestrus stress group (p<0.05). In conclusion, the estrous cycle influenced the acute stress-induced atrial supersensitivity to noradrenaline.  相似文献   

11.
The effects of thymulin and GnRH on FSH and LH release were studied in suspension cultures of anterior pituitary cells from female adult rats sacrificed on each day of the estrous cycle. The spontaneous release of gonadotropins by pituitaries, as well as their response to GnRH or thymulin addition, fluctuated during the estrous cycle. Adding thymulin to pituitary cells from rats in diestrus 1 increased the concentration of FSH; while in cells from rats in estrus, FSH level decreased. Thymulin had a stimulatory effect on the basal concentration of LH during most days of the estrous cycle. Adding GnRH increased FSH release in cells from rats in diestrus 1, diestrus 2, or proestrus, and resulted in higher LH levels in cells obtained from rats in all days of the estrous cycle. Compared to the GnRH treatment, the simultaneous addition of thymulin and GnRH to cells from rats in diestrus 1, diestrus 2, or proestrus resulted in lower FSH concentrations. Similar results were observed in the LH release by cells from rats in diestrus 1, while in cells from rats in proestrus or estrus, LH concentrations increased. A directly proportional relation between progesterone serum levels and the effects of thymulin on FSH release was observed. These data suggest that thymulin plays a dual role in the release of gonadotropins, and that its effects depend on the hormonal status of the donor's pituitary.  相似文献   

12.
Myocardial endotoxin tolerance may be induced in both males and females; however, it remains unknown whether there are mechanistic and threshold differences between the sexes. We hypothesized that endogenous estrogen mediates a higher threshold for endotoxin (ETX)-induced protection in females. Adult proestrus and ovariectomized (OVX) female rats were preconditioned (PC) with intraperitoneal injections of 125 (PC+125) or 500 (PC+500) microg/kg Salmonella typhimurium LPS (ETX) or normal saline (PC-). Twenty-four hours later, injury dose ETX (500 microg/kg) was injected. After 6 h, myocardial function was measured via Langendorff. p38 MAPK and JNK activation and TNF-alpha, IL-1, and IL-6 expression were evaluated. ETX injury significantly decreased left ventricular developed pressure in PC- groups vs. controls. PC+500 regimen protected against ETX injury, resulting in normal cardiac function. PC+125 regimen protected OVX but not proestrus females, which had diminished myocardial function. Activated JNK and TNF-alpha increased in PC- but were diminished in PC+500 animals. Importantly, activated JNK and TNF increased in PC+125 proestrus females, whereas PC+125 OVX females displayed decreases in these molecules. There were no differences in p38 MAPK activation or expression of IL-1 or IL-6. These results demonstrate that proestrus females require a higher stimulus (PC+500) to achieve myocardial protection against ETX injury. Removal of endogenous estrogen (OVX) lowered the preconditioning threshold (PC+125), resulting in protection after lesser injury. Additionally, myocardial JNK and TNF expression was decreased in OVX PC+125 females, which correlated with myocardial function differences. Therefore, we conclude that endogenous estrogen mediates a higher threshold for ETX tolerance in female myocardium.  相似文献   

13.
The immune responsiveness of spleens from female BALB/c mice to PHA, Con A, and LPS was greater at proestrus and metestrus as compared with estrus and diestrus. The peaks of responsiveness corresponded to reported elevated levels of estrogen and pregnenolone during these phases of the cycle. Similar results were obtained with the IgM or direct plaque-forming cell responses, which were also increased at proestrus and metestrus. It appears that female hormones may directly or indirectly stimulate immune responsiveness in adult mice.  相似文献   

14.
Recent literature indicates that females are more resistant to shock-, trauma-, and sepsis-induced immune dysfunction and organ injury than are males. Consequently, using trauma-hemorrhagic shock (T/HS) and burn models, we tested whether the neutrophil response to trauma occurred in a sexually dimorphic fashion and, if so, the role of sex hormones. Neutrophil activation, as reflected by CD11b expression and respiratory burst activity, was increased to a greater extent in male rats than in female rats after T/HS or burn injury. Testosterone appeared to potentiate neutrophil activation, because castration reduced neutrophil activation, whereas ovariectomy had little effect. Mechanistically, this sexually dimorphic neutrophil response appeared to be due to both cellular and humoral factors. Evidence for a cellular difference between male and female neutrophils is based on the observation that naive female neutrophils were more resistant to activation by burn or T/HS plasma and lymph than naive male neutrophils and that this resistance varied over the estrus cycle. Additionally, the humoral environment was more neutrophil activating in male rats, because burn and T/HS plasma and lymph from male rats activated naive male neutrophils to a greater extent than comparable samples from females. Last, on the basis of in vitro experiments examining the effects of estrogen on calcium signaling, it appears that estrogen limits trauma-induced neutrophil activation, at least in part, by limiting the entry of calcium into the cell via store-operated calcium entry mechanisms. In conclusion, there is a striking sexual dimorphism in neutrophil responses after trauma, and these changes reflect both cellular resistance to activation as well as a less activating humoral environment.  相似文献   

15.
Irritable bowel syndrome (IBS) is often seen in women, and symptom severity is known to vary over the menstrual cycle. In addition, activation of the hypothalamic-pituitary-adrenal (HPA) axis enhances symptomology and patients with IBS have increased activation of the amygdala, a brain region known to facilitate HPA output. However, little is known about the effects of amygdala activation during different stages of the menstrual cycle. We therefore investigated the effects of amygdala activation on somatic and visceral pain perception over the rat estrous cycle. Female Wistar rats were implanted with either corticosterone (Cort) or cholesterol as a control onto the dorsal margin of the central amygdala. Visceral sensitivity was quantified by recording the visceromotor response (VMR) to colorectal distension (CRD) and somatic sensitivity was assessed via the Von Frey test. In cholesterol controls, both visceral and somatic sensitivity varied over the estrous cycle. Rats in proestrus/estrus responded to CRD with an increased VMR compared with rats in metestrus/diestrus. Somatic sensitivity followed a similar pattern with enhanced sensitivity during proestrus/estrus compared with metestrus/diestrus. Elevated amygdala Cort induced visceral hypersensitivity during metestrus/diestrus but had no effect during proestrus/estrus. In contrast, elevated amygdala Cort increased somatic sensitivity during both metestrus/diestrus and proestrus/estrous. These results suggests that amygdala activation by Cort eliminates spontaneously occurring differences in visceral and somatic pain perception, which could explain the lowered pain thresholds and higher incidence of somatic pain observed in women with IBS.  相似文献   

16.
In this study, the response of female rats in different phases of the estrus cycle to nociceptive stimulation was evaluated using thermal (hot plate and tail immersion) and chemical (formalin) tests. In the hot plate test, the paw licking latency fell significantly (p < 0.05) in the metestrus and diestrus phases compared with the proestrus and estrus phases. The observations in the tail immersion test also followed the same pattern. The significant reductions in the paw licking and tail withdrawal latencies due to a lowered threshold denote an increase in pain sensitivity in the metestrus and diestrus phases. In the formalin test, the licking time fell significantly from the metestrus to the diestrus phase compared with the proestrus and estrus phases, the reduction in this test which was due to an increased threshold connotes a decrease in pain sensitivity. The results therefore seem test dependent. In conclusion, pain threshold in female rats depends on the estrus state. Keywords: Pain threshold, Variation, Estrus cycle.  相似文献   

17.
It is revealed, that the activity of neuropeptide metabolism enzymes (carboxypeptidase H, phenylmethylsulfonilfluorid-inhibited carboxypeptidase) in the female rat tissues depends upon the stage of estrus cycle. The carboxypeptidase H activity in the pituitary gland is the highest in proestrus; it is almost 3 times higher in comparison with diestrus; it is a little bit higher in striatum on the stage of estrus, than in diestrus and proestrus, in adrenals on the stage of proestrus and estrus it is a little bit lower, than in diestrus; in the ovaries on the stage of proestrus it is much higher, than in estrus and diestrus. The activity of PMSF-inhibited carboxypeptidase in ovaries on the stage of proestrus and diestrus is 1.7-1.8 times higher, than at the stage of diestrus. The activity of carboxypeptidase M in adrenal tissue at the stage of proestrus is 35-40% of that at the stage of diestrus and estrus. The activity of carboxypeptidase M in the ovaries at the stage of diestrus is 45-50% of that at the stage of diestrus and estrus. The role of the investigated enzymes in cyclic changes of a level of biologically active peptides and in regulation of estrus cycle is discussed.  相似文献   

18.
Progesterone and estradiol play an important role in the regulation of lung functions such as ventilation and vasoconstriction. The genomic actions of progesterone and estradiol are mediated by their nuclear receptors: progesterone receptors (PR) and estrogen receptors (ER). These actions are linked to interactions between steroid receptors and some cofactors that function as coactivators or corepressors. In this work we determined the content of PR isoforms, ER-beta, one coactivator (SRC-1), and one corepressor (SMRT) in the lung of both female rats during the estrous cycle and intact males by Western blot. The rat lung presented a higher content of PR-A than that of PR-B during the estrous cycle. The highest content of both PR isoforms was observed on the day of proestrus whereas the lowest one was found on the day of estrus. In contrast, the content of ER-beta was the lowest on the day of proestrus and it increased at estrus. The content of SRC-1 and SMRT increased on the day of diestrus. SRC-1 content decreased at proestrus and estrus, while SMRT content decreased at proestrus and increased again at estrus. In the lung of adult male rats the content of PR isoforms, ER-beta and SMRT was lower than in that of females, whereas the content of SRC-1 was similar in both sexes. Our results suggest a sexual dimorphism in the content of PR, ER-beta, and SMRT in the rat lung as well as a relation of their content to the physiological levels of progesterone and estradiol.  相似文献   

19.
It is clear that male hamsters discriminate between the odors of individual, conspecific females, as shown by using habituation-dishabituation methods. However, it is not clear from past research whether male hamsters are able to discriminate between the odors of estrous and non-estrous females. A series of habituation-dishabituation experiments was conducted to determine whether males discriminated between different estrous cycle states using two female secretions, those from flank-glands and vaginal secretions. We found that, when habituated to a female flank-gland secretion, males discriminated between this female and a second female on the test trial, whether both were in estrus, both were in diestrus, or one was in estrus and the other in diestrus. There was no difference, however, in the magnitude of their dishabituation response toward flank-gland odors of females in estrus and diestrus. These results suggest that males use flank-gland odors to gain information primarily about individuals. When tested with vaginal secretions in habituation-dishabituation tests, males only showed differences in investigation when the second female was in estrus, indicating that males use vaginal secretions to gain information primarily about reproductive state.  相似文献   

20.
The rat uterus receives an innervation from the lumbosacral and thoracolumbar segments of the spinal cord. These segments receive descending oxytocinergic projections from the paraventricular nucleus of the hypothalamus. We tested the hypothesis that oxytocin regulates uterine motility through a spinal site of action. Oxytocin was administered in anesthetized female rats either intrathecally at the lumbosacral or thoracolumbar spinal cord levels or intravenously. Uterine activity was revealed by measuring changes of intrauterine pressure using an indwelling balloon placed in one caudal uterine horn. The uterus displayed a spontaneous activity characterized by intrauterine pressure rises, the frequency, amplitude, and duration of which were dependent on the stage of the estrous cycle. Oxytocin delivered at the lumbosacral level affected the frequency (during proestrus, estrus, and diestrus) and amplitude (during proestrus and estrus) of uterine activity. During estrus, oxytocin delivered at the thoracolumbar level affected the frequency, amplitude, and duration of the intrauterine pressure rises. Intravenous oxytocin not only affected intrauterine pressure rises (namely amplitude during proestrus and estrus and frequency and duration during estrus) but also increased the basal tone during estrus. The effects of lumbosacral oxytocin were partly mimicked by the oxytocin agonist [Thr(4),Gly(7)]-oxytocin blocked by the oxytocin receptor antagonist atosiban and by hexamethonium. Arginine vasopressin delivered at the lumbosacral level had no effect. These results support our hypothesis that oxytocin released by descending paraventriculo-spinal pathways and acting on spinal oxytocin receptors modulates the activity of the uterus. This regulation is cycle dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号