首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meltblowing is a most versatile and cost‐effective process commercially available worldwide to produce microfiber nonwovens directly from thermoplastic resins. The new bicomponent (bico) meltblown technology opens a great possibility to make even finer microfibers by subsequently fiber splitting. Water‐dispersive Eastman AQ polymers were initially introduced to the meltblown process to make the mono‐ and bicomponent meltblown webs at Textiles and Nonwovens Development Center (TANDEC), University of Tennessee, Knoxville. The postwater treatment was performed on the fabrics, which resulted in the dispersive part (AQ polymer) being dispersed in water and only the other part remaining in the bico web. A process–structure–property study is provided toward the research reported in this article. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1218–1226, 2004  相似文献   

2.
The bicomponent meltblown process offers to associate two polymers in the same fiber generating fibrous media with new properties. In this study, we associate polypropylene (PP) and poly(lactic acid) (PLA), from renewable sources, polymers. The influence of primary air flow rate and the structural properties of the PP/PLA bicomponent meltblown are compared to PP and PLA monocomponent meltblown. The structural properties include fiber morphology and diameter, packing density, permeability, thermal shrinkage and crystallization. The results relate that the PP/PLA bicomponent meltblown fiber diameters are thinner than those of PLA monocomponent. Moreover, it has higher resistance to thermal shrinkage compared to PP monocomponent meltblown. The packing density and permeability are not affected by the association of PP and PLA due to low crimp effect. Two different filament formations of PP/PLA bicomponent meltblown at low and high primary air flow rate have also been observed. Lastly, this study illustrates that PP and PLA association is viable, showing the production of PP/PLA bicomponent microfiber and limited thermal shrinkage at high temperature. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44540.  相似文献   

3.
Polypropylene (PP)/poly(ethylene terephthalate) (PET) bicomponent (bico) fibres are successfully melt blown in the Reicofil® meltblown (MB) pilot line commissioned at the Textiles and Nonwovens Development Center (TANDEC), the University of Tennessee, Knoxville. The bico fibers possess a cross‐sectional side‐by‐side configuration. The originally expected greater fiber crimp due to density and fine structure gradients on the different sides of the bico fibers was not commonly observed in the normal MB webs. These fabrics were exposed to dry heat for a period of time. The properties before and after the heat treatment were determined and compared to investigate the effects of heat on their properties. It was found that the bico webs are thermal dimensionally stable and many of their properties were not significantly affected. A mechanism is suggested on the thermal dimensional stability of the PP/PET bico MB webs. © 2003 Society of Chemical Industry  相似文献   

4.
The high‐speed melt spinning of sheath/core type bicomponent fibers was performed and the change of fiber structure with increasing take‐up velocity was investigated. Two kinds of polyethylene, high density and linear low density (HDPE, LLDPE) with melt flow rates (MFR) of 11 and 50, [HDPE(11), LLDPE(50)], and poly(ethylene terephthalate) (PET) were selected and two sets of sheath/core combinations [HDPE(11)/PET and LLDPE(50)/PET bicomponent fibers] were studied. The fiber structure formation and physical property effects on the take‐up velocities were investigated with birefringence, wide‐angle X‐ray diffraction, thermal analysis, tensile tests, and so forth. In the fiber structure formation of PE/PET, the PET component was developed but the PE components were suppressed in high‐speed spinning. The different kinds of PE had little affect on the fine structure formation of bicomponent fibers. The difference in the mechanical properties of the bicomponent fiber with the MFR was very small. The instability of the interface was shown above a take‐up velocity of 4 km/min, where the orientation‐induced crystallization of PET started. LLDPE(50)/PET has a larger difference in intrinsic viscosity and a higher stability of the interface compared to the HDPE(11)/PET bicomponent fibers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2254–2266, 2000  相似文献   

5.
The effect of nanoclay additive on the structure, morphology, and mechanical properties of polypropylene meltblown webs is reported here for the first time. Effect of nanoclay on the meltblown processing, resultant fiber web structure, and properties are discussed. Combination of wide‐angle x‐ray diffraction, differential scanning calorimetry, and transmission electron microscopy were used to determine the nature of clay dispersion in the polypropylene fiber matrix and resultant morphology. Transmission electron microscopy micrographs revealed nanolevel dispersion of the additive in the fiber web. Clay additive did not offer any benefit as far as the mechanical properties of the meltblown web are concerned. Meltblown web samples with nanoclay had higher variability in web structure, high air permeability, high stiffness, and lower mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The degradation of diethylene glycol terephthalate (DTP) and polyethylene terephthalate fiber (PET fiber) by microbes and lipase was studied. The HPLC method was used to determine the degradation ratio and degradation rule of DTP. Greater than 90% DTP was degraded by microbes in 24 days and 40% by lipase in 24 h. The degradation of DTP can be described by the first‐order reaction model. Although the biodegradation ratio of PET fiber was still weak, we demonstrated with SEM micrographs and HPLC analysis that microbes and lipase could act on the PET fiber and there were some cracks on the surface of the fiber. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1089–1096, 2004  相似文献   

7.
干湿热处理对PET/PTT纤维结构与性能的影响   总被引:1,自引:0,他引:1  
通过对167dtex和111dtex聚对苯二甲酸乙二醇酯(PET)/聚对苯二甲酸丙二醇酯(PTT)双组分复合纤维的卷曲率、拉伸性能、声速取向及外观形态的测试,研究了干湿热处理对纤维结构与性能的影响。结果表明:经干、湿热处理后,纤维的断裂强度、声速值较处理前有显著下降,而卷曲率和断裂伸长率则明显著上升;湿热处理较干热处理对PET/PTT复合纤维断裂强度的影响较小。  相似文献   

8.
Although there are significant differences between high‐speed melt spinning and melt blowing (MB), they are similar in many important components. This study, motivated by the need to better understand the bicomponent MB process, used the basic theories of high‐speed melt spinning to estimate the fiber temperature and elongation viscosity profiles of the polypropylene/poly(ethylene terephthalate) (PP/PET) bicomponent MB process. During the MB process, the filament temperature decreased dramatically within the first 2 in. from the MB die. The fiber temperature‐decay profiles of PP, PET monocomponent, and PP/PET bicomponent filaments followed similar trends. PP filaments attenuated faster than PET filaments and the bicomponent filaments attenuated at a medium rate between that of PP and PET. Accordingly, the elongational viscosity increased significantly in the first 2 in. from the die. PET filaments exhibited higher elongational viscosity than that of 100% PP filaments. The elongational viscosity profile of 75%PP/25%PET was between that of PP and PET monocomponent filaments. These data provided important information on understanding the MB process and filament attenuation. It also suggested that the filament elongational viscosity profile is the key factor in production of finer bicomponent MB fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1145–1150, 2003  相似文献   

9.
PET/PTT复合纤维卷缩性能的研究   总被引:5,自引:3,他引:2  
通过对不同线密度的聚对苯二甲酸乙二醇酯/聚对苯二甲酸丙二醇酯(PET/PTT)复合纤维的热收缩率、卷曲收缩率、卷曲模量及卷曲稳定度的测试,研究了干热和沸水处理条件下的PET/PTT复合纤维的卷缩性能。结果表明:干热处理时,PET/PTT复合纤维的热收缩率随温度的升高而升高,随线密度的提高而减小;与干热处理比较,沸水加压处理后的纤维具有较好的热收缩率和卷曲性能。PET/PTT复合纤维线密度越低,其卷曲收缩能力越强,线密度为172 dtex时,纤维表现出较好的卷曲收缩率和卷曲稳定性。  相似文献   

10.
The application of alkaline hydrolysis to study the change in the fine structure of bicomponent polyester fibers as their surface is removed progressively was explored. The samples were prepared with a poly(butylene terephthalate) (PBT) sheath and a poly(ethylene terephthalate) (PET) core. The reagent used to hydrolyze the PBT was 1M NaOH in 75/25 methanol to water since it appeared to react topochemically with the fiber. The solution reacted more rapidly with PET than with PBT. Thus, when necessary to retard the weight loss of the bicomponent fibers, after a 2‐h hydrolysis with this reagent to remove PBT, it was replaced with aqueous 1M NaOH solution containing 0.1% cetrimmonium bromide. Unlike homofil PET or PBT fibers, where alkaline attack appeared to be confined to the surface and left the residue relatively smooth, the bicomponent fiber was attacked unevenly, and penetration to the PET core occurred before all the PBT at the surface was removed. Nevertheless, most of the reaction was confined initially to the PBT sheath. The tenacity and extension at break of the PBT–PET fiber passed through a maximum as hydrolysis progressed. The fall in tenacity at high weight losses is ascribed to increasing surface defects in the fiber surface. After removal of the PBT by the hydrolysis, the birefringence of the residue became progressively higher. The synergistic effect of the PBT sheath on the properties of the PET core and the possible causes of the nonuniform hydrolysis at the PBT surface are discussed. An equation is proposed that includes an interaction parameter, which can be utilized to determine which property is affected most by the hydrolysis of a bicomponent fiber. In this instance, it appears from the parameters that the order is strength > extension at break ≈ birefringence. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1163–1173, 1999  相似文献   

11.
为了探索湿热处理工艺中并列复合聚酯纤维的性能变化,采用低黏半消光聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇酯(PBT)为原料,通过50∶50的复合比进行并列复合纺丝,制得并列复合双组分聚酯纤维。将得到的双组分复合纤维进行湿热处理,研究了热处理温度、时间对并列复合双组分聚酯长丝的卷曲性能和力学性能的影响。结果表明:纤维经过湿热处理后,卷曲结构致密,卷曲半径减小;湿热处理时间对长丝的卷曲性能影响较大,卷曲率、卷曲回复率和卷曲弹性率都随时间的延长而增大;在低温下,卷曲率会随着时间的延长而增大,但较高温度下,长时间的处理不利于卷曲弹性率和卷曲回复率的提高;纤维经过湿热处理,断裂强度下降,断裂伸长率随着处理时间的延长呈现不同的变化趋势。  相似文献   

12.
探讨了150 dtex/48 f聚对苯二甲酸乙二醇酯(PET)/聚对苯二甲酸丙二醇酯(PTT)双组分并列预取向丝(POY)的生产工艺.结果表明:选择特殊设计的纺丝组件,喷丝板的长径比大于2,孔形为花生形,选用特性黏数为0.53 dL/g的PET和特性黏数为1.02 dL/g的PTT切片质量比为50/50,PET的纺丝温...  相似文献   

13.
Poly(trimethylene terephthalate) (PTT)‐based mono and bico meltblown webs have been produced by using a Reicofil® Bi‐Component Meltblown Line at TANDEC, located at the University of Tennessee, Knoxville, TN. Thermal and flow properties of PTT were first examined by DSC (differential scanning calorimetry) and with a Melt Indexer for an effective experimental design through the Surface Response Methodology (SRM). The processability of meltblowing in a wide range of operating windows was extensively investigated. Melt temperature, melt throughput, air temperature, airflow rate, and DCD (distance of collector to die) were considered as primary process control variables. The produced webs were characterized for fiber diameter, bulk density, air permeability, hydrostatic head, tensile properties, and heat shrinkage. Non‐round and curly or twisted fibers were observed in the bico PP/PTT webs by SEM (scanning electrical microscope). The PTT grade studied is quite suitable for the meltblown process. The PTT/PP‐based bico webs showed enhanced barrier properties and heat resistance. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1280–1287, 2002  相似文献   

14.
The change of crimp contraction and shrinkage in the melt spinning and drawing process of polyethylene terephthalate (PET) side‐by‐side bicomponent fibers was studied. Regular PET and modified PET were selected to make a latent crimp yarn. The modified PET was synthesized to increase thermal shrinkage. The crimp contraction is mainly dependent on drawing conditions such as draw ratio, heat‐set temperature, and drawing temperature. Difference in shrinkage between the PET and the modified PET causes the self‐crimping of bicomponent fibers. Although changing the heat‐set temperature and the drawing temperature can not affect dimensional change, the crimp contraction varies with those variables. As the heat‐set temperature and the drawing temperature decrease, the crimp contraction increases. Difference in elongation also affects the crimp contraction in the effect of draw ratio. When the modified PET with neopentyl group was used for highly shrinkable part, the crimp contraction is greater in comparison with modified PET with dimethyl isophthalate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1362–1367, 2006  相似文献   

15.
将特性黏数差为0.064 dL/g的高、低黏度聚对苯二甲酸乙二醇酯(PET)制备的双组分并列复合中空纤维原丝进行拉伸制得拉伸丝(DT丝),对DT丝的拉伸工艺进行了研究,得到了低中空高回弹三维螺旋卷曲纤维的最佳拉伸工艺条件.结果表明:DT丝的三维卷曲性能和拉伸方式、拉伸倍率及其分配密切相关,采取二步拉伸、一级拉伸倍率较大...  相似文献   

16.
Nazarov  V. G.  Dedov  A. V. 《Fibre Chemistry》2021,53(2):143-148
Fibre Chemistry - The influence of the processing rate of nonwoven needle-punched fabrics made of polyethylene terephthalate and bicomponent fibres of different surface density on air filtration...  相似文献   

17.
Melt spinning of conductive polymer composites (CPCs) is coupled with some difficulties such as a decrease of conductivity upon drawing and a reduced spinnability with increasing filler concentration. Applying bicomponent technology may provide the possibility to produce fibers from CPCs with a high filler concentration. A pilot‐scale bicomponent melt spinning set‐up was used to produce core/sheath fibers with fiber titers between 13 and 47 dtex. The sheath material was polyamide 6 (PA6) or polypropylene (PP) and the core material was a CPC. Two CPCs were used, polypropylene (PP) with carbon black (CB), denoted by PP/CB, and polyethylene (PE) with multiwalled carbon nanotubes (MWNT), denoted by PE/MWNT. The results showed that both materials could be used with a filler concentration of 10 wt % to obtain melt draw ratios up to 195. The volumetric fraction of core material in the bicomponent structure was 28%. A heat treatment of PP/CB fibers restored the conductivity to the level of the undrawn material, corresponding to an increase in conductivity by a factor 5. The same heat treatment had a positive effect on the conductivity of PE/MWNT fibers although the conductivity was not restored. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Process modeling is essential for the control of optimization and an on-line prediction is very useful for process monitoring and quality control. Up to now, no satisfactory methods have been found to model an industrial meltblown process since it is of highly dimensional and nonlinear complexity. In this article, back-propagation neural networks (BPNNs) were investigated for modeling the meltblown process and on-line predicting the product specifications such as fiber diameter and web thickness. The feasibility of this application was successfully demonstrated by agreement of the prediction results from the BPNN to the actual measurements of a practical case. The network inputs included extruder temperature, die temperature, melt flow rate, air temperature at die, air pressure at die, and die-to-collector distance (DCD). The output of the fiber diameter was obtained by neural computing. The network training was based on 160 sets of the training samples and the trained network was tested with 70 sets of test samples which were different from the training data. This research is preliminary and of industrial significance and especially valuable for the optimal control of advanced meltblown processes. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
This research investigated the attenuation of polypropylene (PP)/poly(ethylene terephthalate) (PET) bicomponent (bico) filaments during the melt blowing (MB) process. It was found that both mono‐ and bi‐component filaments attenuated from several hundred micrometers to a few micrometers in the first 5 centimeters from the die. However, fiber diameter distributions were found to be broad in these regions. The filaments were attenuated much slower but exhibited narrower diameter distributions as they moved further from the die. The diameters of bico MB filaments were between those of 100% PP and 100% PET filaments. The PET component in a bico filament controls the final fiber diameter. During melt blowing, filaments were aligned orderly with the airflow direction in a short distance near the die. Filament entanglements started at about 2.5 cm from the die and became more and more randomly oriented as the distance‐from‐the‐die (DFD) increased. The fiber diameter distribution of bico filaments was broader than that of 100% PP filaments. A higher airflow rate led to a narrower fiber size distribution for bico filaments.  相似文献   

20.
以改性聚酯(COPET)及聚对苯二甲酸丙二醇酯(PTT)为原料经复合纺丝制备了COPET/PTT复合纤维,研究了热处理方式、温度和时间对COPET/PTT纤维卷曲性能的影响。结果表明:沸水处理优于干热处理;COPET/PTT复合比50/50的纤维具有较好的潜在卷曲性;湿热温度超过80℃,沸水处理时间10~20min,纤维卷曲性趋于稳定;干热温度在140~160℃时,纤维具有良好的卷曲性能;张力热处理有利于提高纤维的卷曲弹性回复能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号