首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (Pst‐b‐PDMS‐b‐PSt) triblock copolymers were synthesized by atom transfer radical polymerization (ATRP). Commercially available difunctional PDMS containing vinylsilyl terminal species was reacted with hydrogen bromide, resulting in the PDMS macroinitiators for the ATRP of styrene (St). The latter procedure was carried out at 130°C in a phenyl ether solution with CuCl and 4, 4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as the catalyzing system. By using this technique, triblock copolymers consisting of a PDMS center block and polystyrene terminal blocks were synthesized. The polymerization was controllable; ATRP of St from those macroinitiators showed linear increases in Mn with conversion. The block copolymers were characterized with IR and 1H‐NMR. The effects of molecular weight of macroinitiators, macroinitiator concentration, catalyst concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3764–3770, 2004  相似文献   

2.
Poly(n‐butyl methacrylate)‐b‐polystyrene‐b‐poly(n‐butyl methacrylate) (PBMA‐b‐PSt‐b‐PBMA) triblock copolymers were successfully synthesized by emulsion atom transfer radical polymerization (ATRP). Difunctional polystyrene (PSt) macroinitiators that contained alkyl chloride end‐groups were prepared by ATRP of styrene (St) with CCl4 as initiator and were used to initiate the ATRP of butyl methacrylate (BMA). The latter procedure was carried out at 85°C with CuCl/4,4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as catalyst and polyoxyethylene (23) lauryl ether (Brij35) as surfactant. Using this technique, triblock copolymers consisting of a PSt center block and PBMA terminal blocks were synthesized. The polymerization was nearly controlled, ATRP of St from those macroinitiators showed linear increases in the number average molecular weight (Mn) with conversion. The block copolymers were characterized with infrared (IR) spectroscopy, hydrogen‐1 nuclear magnetic resonance (1HNMR), and differential scanning calorimetry (DSC). The effects of the molecular weight of macroinitiators, concentration of macroinitiator, catalyst, emulsion, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP were also reported. POLYM. ENG. SCI., 45:1508–1514, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

4.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

5.
Poly(butyl methylacrylate)–b–poly(dimethylsiloxane)–b–poly(butyl methylacrylate) (PBMA–b–PDMS–b–PBMA) triblock copolymers were synthesized by atom transfer radical polymerization (ATRP). The reaction of α,ω‐dichloride PDMS with 2′‐hydroxyethyl‐2‐bromo‐2‐methylpropanoate gave suitable macroinitiators for the ATRP of BMA. The latter procedure was carried out at 110°C in a phenyl ether solution with CuCl and 4,4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as the catalyzing system. The polymerization was controllable, with the increase of the monomer conversion, there was a nearly linear increase of molecular weight and a decrease of polydispersity in the process of the polymerization, and the rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with IR and 1H‐NMR and differential scanning calorimetry. The effects of macroinitiator concentration, catalyst concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP were reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 532–538, 2004  相似文献   

6.
A series of polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (PS/PDMS/PS) triblock copolymers had been synthesized by atom transfer radical polymerization (ATRP). The products had been characterized by Fourier transform infrared, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, contact angle, and scanning electron microscope. The results indicate that the PS chains have been successfully blocked onto the PDMS back bone, and the PS‐b‐PDMS‐b‐PS triblock copolymers have low‐surface tension, good thermal stability, and microphase separation configuration. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

8.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The synthesis of polystyrene‐b‐polydimethylsiloxane‐b‐polystyrene (PSt‐b‐PDMS‐b‐PSt) copolymers is described. Commercially available difunctional PDMS containing vinylsilyl terminal species was reacted with hydrogen bromide resulting in the PDMS macroinitiators. The terminal alkyl bromide groups were then used as initiators for atom transfer radical polymerization (ATRP) to produce block copolymers. Using this technique, triblock copolymers consisting of a PDMS centre block and polystyrene terminal blocks were synthesized. ATRP of St from those macroinitiators showed linear increases in Mn with conversion, demonstrating the effectiveness of ATRP to synthesize a variety of inorganic/organic polymer hybrids. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Background: Radical polymerization is used widely to polymerize more than 70% of vinyl monomers in industry, but the control over molecular weight and end group of the resulting polymers is always a challenging task with this method. To prepare polymers with desired molecular weight and end groups, many controlled radical polymerization (CRP) ideas have been proposed over the last decade. Atom transfer radical polymerization (ATRP) is one of the successful CRP techniques. Using ATRP, there is no report on the synthesis of polystyrene‐block‐polyurethane‐block‐polystyrene (PSt‐b‐PU‐b‐PSt) tri‐block copolymers. Hence this paper describes the method of synthesizing these tri‐block copolymers. To accomplish this, first telechelic bromo‐terminated polyurethane was synthesized and used further to synthesize PSt‐b‐PU‐b‐PSt tri‐block copolymers using CuBr as a catalyst and N,N,N,N″,N″‐pentamethyldiethylenetriamine as a complexing agent. Results: The ‘living’ nature of the initiating system was confirmed by linear increase of number‐average molecular weight and conversion with time. A semi‐logarithmic kinetics plot shows that the concentration of propagating radical is steady. The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and differential scanning calorimetry show that the novel PSt‐b‐PU‐b‐PSt tri‐block copolymers were formed through the ATRP mechanism. Conclusion: For the first time, PSt‐b‐PU‐b‐PSt tri‐block copolymers were synthesized through ATRP. The advantage of this method is that the controlled incorporation of polystyrene block in polyurethane can be achieved by simply changing the polymerization time. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
BACKGROUND: The surface of a substrate which comprises a fibrous material is brought into contact with a type of amphiphilic block copolymer which comprises hydrophilic/hydrophobic polymeric blocks. These amphiphilic copolymers have been synthesized by atom transfer radical polymerization (ATRP) technique. The atom transfer radical polymerization of poly(2,3,4,5,6‐pentafluorostyrene)‐block‐poly(ethylene oxide) (PFS‐b‐PEO) copolymers (di‐ and triblock structures) with various ranges of PEO molecular weights was initiated by a PEO chloro‐telechelic macroinitiator. The polymerization, carried out in bulk and catalysed by copper(I) chloride in the presence of 2,2′‐bipyridine ligand, led to A–B–A amphiphilic triblock and A–B amphiphilic diblock structures. RESULTS: With most of the macroinitiators, the living nature of the polymerizations led to block copolymers with narrow molecular weight distributions (1.09 < Mw/Mn < 1.33) and well‐controlled molecular structures. These block copolymers turned out to be water‐soluble through adjustment of the PEO block content (>90 wt%). Of all the block copolymers synthesized, PFS‐b‐PEO(10k)‐b‐PFS containing 10 wt% PFS was found to retard water absorption considerably. CONCLUSION: The printability of paper treated with the copolymers was evaluated with contact angle measurements and felt pen tests. The adsorption of such copolymers at the solid/liquid interface is relevant to the wetting and spreading of liquids on hydrophobic/hydrophilic surfaces. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
A new PDMS macroinitiator is proposed for the anionic ring‐opening polymerization of lactams. This α,ω‐dicarbamoyloxy caprolactam PDMS macroinitiator was readily obtained in quantitative yield, by an original synthesis scheme in two steps, which involved the scarcely reported reaction of isocyanates with silanol groups. It was then shown that this bifunctional macroinitiator enabled to synthesize triblock copolymers PA12‐b‐PDMS‐b‐PA12 by polymerization of lauryl lactam (LL) at high temperature (200°C) in inert atmosphere under conditions compatible with reactive extrusion processes. Another related high molar weight α,ω‐diacyllactam PDMS macroinitiator was also successfully used in the polymerization of LL under the same conditions, therefore overcoming the limitations formerly reported for this type of macroinitiators during the polymerization ε‐caprolactam (ε‐CL) at a much lower temperature (80°C). Triblock copolymers with a wide range of PA12 /molar weights (Mn: ~ 10,800–250,000 Da) were eventually obtained by using both types of macroinitiators. DMTA and DSC analyses showed that their thermal properties were strongly dependent upon their respective contents in soft and hard blocks. Such triblock copolymers already appear very promising for the highly effective in situ compatibilization of PA12/PDMS blends as shown by recent complementary results obtained in our laboratory. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2818–2831, 2006  相似文献   

13.
Poly(dimethylsiloxane)(PDMS)‐based triblock copolymers were successfully synthesized via atom transfer radical polymerization (ATRP) initiated with bis(bromoalkyl)‐terminated PDMS macroinitiator (Br‐PDMS‐Br). First, Br‐PDMS‐Br was prepared by reaction between the bis(hydroxyalkyl)‐terminated PDMS and 2‐bromo‐2‐methylpropionyl bromide. PSt‐b‐PDMS‐b‐PSt, PMMA‐b‐PDMS‐b‐PMMA and PMA‐b‐PDMS‐b‐PMA triblock copolymers were then synthesized via ATRP of styrene (St), methyl methacrylate (MMA) and methyl acrylate (MA), respectively, in the presence of Br‐PDMS‐Br as a macroinitiator and CuCl/PMDETA as a catalyst system at 80 oC. Triblock copolymers were characterized by FTIR, 1H‐NMR and GPC techniques. GPC results showed linear dependence of the number‐average molecular weight on the conversion as well as the narrow polydispersity indicies (PDI < 1.57) for the synthesized triblock copolymers which was lower than that of Br‐PDMS‐Br macroinitiator (PDI = 1.90), indicating the living/controlled characteristic of the reaction. Also, there was a very good agreement between the number‐average molecular weight calculated from 1HNMR spectra and that calculated theoretically. Results showed that resulting copolymers have two glass transition temperatures, indicating that triblock copolymers have microphase separated morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Reversible addition–fragmentation chain transfer polymerization (RAFT) was developed for the controlled preparation of polystyrene (PS)/poly(4‐vinylpyridine) (P4VP) triblock copolymers. First, PS and P4VP homopolymers were prepared using dibenzyl trithiocarbonate as the chain transfer agent (CTA). Then, PS‐b‐P4VP‐b‐PS and P4VP‐b‐PS‐b‐P4VP triblock copolymers were synthesized using as macro‐CTA the obtained homopolymers PS and P4VP, respectively. The synthesized polymers had relatively narrower molecular weight distributions (Mw/Mn < 1.25), and the polymerization was controlled/living. Furthermore, the polymerization rate appeared to be lower when styrene was polymerized using P4VP as the macro‐CTA, compared with polymerizing 4‐vinylpyridine using PS as the macro‐CTA. This was attributed to the different transfer constants of the P4VP and PS macro‐CTAs to the styrene and the 4‐vinylpyridine, respectively. The aggregates of the triblock copolymers with different compositions and chain architectures in water also were investigated, and the results are presented. Reducing the P4VP block length and keeping the PS block constant favored the formation of rod aggregates. Moreover, the chain architecture in which the P4VP block was in the middle of the copolymer chain was rather favorable to the rod assembly because of the entropic penalty associated with the looping of the middle‐block P4VP to form the aggregate corona and tailing of the end‐block PS into the core of the aggregates. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1017–1025, 2003  相似文献   

15.
A series of novel polyethylene‐b‐polyurethane‐b‐polyethylene (EUE) triblock copolymers is successfully prepared through a facile route combining the thiol‐ene chemistry, addition polymerization, and coupling reaction. The resulting EUE triblock copolymers are characterized by Nuclear magnetic resonance (1H NMR), Fourier transform‐infrared spectra (FT‐IR), High temperature gel permeation chromatography (HT‐GPC), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM). In addition, the EUE triblock copolymers have been evaluated as compatibilizers in the polymer blends of thermoplastic polyurethane elastomer (TPU) and high‐density polyethylene (HDPE). The SEM results show that the compatibility of immiscible blends is enhanced greatly after the addition of EUE triblock copolymers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42967.  相似文献   

16.
A series of polystyrene‐b‐polybutadiene (PSt‐b‐PBd) block copolymers with various chain lengths and compositions were synthesized by sequential living anionic polymerization and then converted into the corresponding polystyrene‐b‐poly(ethylene‐co‐butene) (PSt‐b‐PEB) block copolymers through the selective hydrogenation of unsaturated polybutadiene segments. Noncatalytic hydrogenation was carried out with diimide as the hydrogen source. The microstructures of PSt‐b‐PBd and PSt‐b‐PEB were investigated with gel permeation chromatography, 1H‐NMR, 13C‐NMR, Fourier transform infrared, and differential scanning calorimetry. The results showed that the hydrogenation reaction was conducted successfully and that the chain length and molecular weight distribution were not altered by hydrogenation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2632–2638, 2006  相似文献   

17.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Polystyrene‐block‐poly(n‐butyl acrylate) block copolymers were prepared from 4‐oxo‐2,2,6,6‐tetramethylpiperidinooxy (4‐oxo‐TEMPO) capped polystyrene macroinitiators at a high temperature, 165°C. It was found that the number‐average molecular weight of PBA chains in block copolymers could reach above 10,000 rapidly at early stage of polymerization with a narrow polydispersity index of 1.2–1.4, but after that, the polymerization seemed to be retarded. Furthermore, according to the kinetic analysis, the concentration of 4‐oxo‐TEMPO was increased mainly by the hydrogen transfer reaction of hydroxylamine (4‐oxo‐TEMPOH) to growing radicals during polymerization. This increase in 4‐oxo‐TEMPO concentration could retard the growth of polymer chains. The rate constant of the hydrogen transfer reaction of 4‐oxo‐TEMPOH to growing radicals, kH, estimated by the kinetic model is about 9.33 × 104M‐1s?1 at 165°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A novel block copolymer, poly(ε‐caprolactone)‐b‐poly(4‐vinyl pyridine), was synthesized with a bifunctional initiator strategy. Poly(ε‐caprolactone) prepolymer with a 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) end group (PCLT) was first obtained by coordination polymerization, which showed a controlled mechanism in the process. By means of ultraviolet spectroscopy and electron spin resonance spectroscopy, the TEMPO moiety was determined to be intact in the polymerization. The copolymers were then obtained by the controlled radical polymerization of 4‐vinyl pyridine in the presence of PCLT. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, and NMR spectroscopy in detail. Also, the effects of the molecular weight and concentration of PCLT on the copolymerization were investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2280–2285, 2004  相似文献   

20.
The ability of atom transfer radical polymerization (ATRP) in the sequential synthesis of triblock copolymers was examined using Cu(I)Cl/2,2′‐bipyridine catalysis at 110°C in toluene, starting from PMMA macroinitiators terminated with the C‐Br group. The PMMAs were prepared by living anionic or group transfer polymerization (GTP), followed by bromination of the respective active site with Br2 or N‐bromosuccinimide (NBS). The yield of the terminal bromination in the products of both living polymerizations was 60–64% at best, compared with the yield of the bromination of 1‐methoxy‐(1‐trimethylsilyloxy)prop‐1‐ene (a model of the GTP active site) with NBS, as found by 1H‐NMR. The PMMA macroinitiators prepared were utilized to start the sequential ATRP, finally affording PMMA‐b‐PBuA‐b‐PSt (Mn 69,100), PMMA‐b‐PSt‐b‐PBuA (Mn 21,300) and PMMA‐b‐PSt‐b‐PMMA (Mn 35,200), which have not yet been synthesized by ATRP. After the second block has been formed, the Br‐unterminated part of PMMA macroinitiator was removed by extraction or repeated precipitation. In the third (last) sequence polymerization, induction periods were observed. The first two triblock copolymers were free of precursors and have Mw/Mn values 1.5–1.6 (SEC). In the course of the last step of PMMA‐b‐PSt‐b‐PMMA synthesis, the content of the PMMA‐b‐PSt precursor slowly decreased with increasing MMA conversion. Still, at ≈90% MMA conversion, about 10–15% of the precursor remained in the product. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3514–3522, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号