首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The fracture behavior of biodegradable fiber–reinforced composites as a function of fiber content under different loading conditions was investigated. Composites with different fiber content, ranging from 5 to 20 wt%, were prepared using commercial starch‐based polymer and short sisal fibers. Quasistatic fracture studies as well as instrumented falling weight impact tests were performed on the composites and the plain matrix. Results showed a significant increase in the crack initiation resistance under quasistatic loading. This was caused by the incorporation of sisal fibers to the matrix and the development of failure mechanisms induced by the presence of the fibers. On the other hand, a modest increasing trend of the resistance to crack initiation with fiber loading was detected. An improved fracture behavior was also observed when the impact loading was parallel to the thickness direction. Under these experimental conditions, the composites exhibited higher values of ductility index, energy at initiation and total fracture energy than the plain matrix. Furthermore, an increasing trend of these parameters with fiber content was detected in the biocomposites. Overall, the addition of sisal fibers to the biodegradable matrix appears to be an efficient mean of improving fracture behavior under both quasistatic and impact loading conditions. POLYM. COMPOS. 26:316–323, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

3.
Although economic, ecological, processing and property considerations suggest that it is very attractive to use lignocellulosic fibers as reinforcement in polymer matrix composites, moisture can strongly and deleteriously affect their properties. In this work the water absorption behavior of sisal/cotton, jute/cotton and ramie/cotton hybrid fabric reinforced composites is evaluated. The effect of the temperature of immersion, fiber volume fraction, and predrying of the fabrics before their incorporation onto the composites are evaluated. Sisal was shown to be the most hygroscopic of the fibers analyzed, and its presence leads to higher values of the maximum water content and of the diffusion coefficient of sisal/cotton reinforced composites. Under the range of temperatures analyzed (30–60°C) the volume fraction of the fibers, rather than the temperature itself, was shown to be the main parameter governing water absorption. Predrying usually lowers maximum water content, although for sisal/cotton reinforced composites a reverse trend was observed for the composites with higher volume fractions. This behavior was again attributed to the higher hydrophilic behavior of sisal fibers.  相似文献   

4.
Biodegradable composites based on cellulose derivatives/starch blends reinforced with sisal short fibers were fabricated by injection molding. Results of short-term flexural creep tests are reported to investigate the time-dependence behavior of the composites. Fiber content and temperature effects are also considered, taking into account various methods and equations. At short times, a creep power law is employed. A master curve with the Arrhenius model is used to determine the creep resistance at longer times and different temperatures. Good fitting of the experimental results with the four-parameter model is reported, leading to a relationship between the observed creep behavior and the composite morphology. The addition of sisal fibers to the polymeric matrix promotes a significant improvement of the composite creep resistance. Polym. Compos. 25:280–288, 2004. © 2004 Society of Plastics Engineers.  相似文献   

5.
The friction‐resistant sisal fiber/nano‐silica phenol formaldehyde resin composites were prepared through compression molding. To enhance the bonding between the sisal fiber (SF) and polymer matrix, SF were treated with different surface modifiers. The worn surfaces of composites were observed by scanning electron microscope (SEM). The result shows that the matrix of nano‐silica phenol formaldehyde resin can relieve the heat fade of the friction materials. Meanwhile sisal fibers treated with borax have effectively improved the friction and wear properties of the composites when the fiber content was 15%. POLYM. COMPOS. 36:433–438, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
In this work, composites of an EVA polymer matrix and short sisal fiber were characterized. The physical‐morphological as well as chemical interactions between EVA and sisal were investigated. When the samples were prepared in the presence of dicumyl peroxide, the results suggest that crosslinking of EVA as well as grafting between EVA and the sisal fibers took place. Morphological changes were studied by scanning electron microscopy (SEM). Results from Hg‐porosimetry, SEM, Fourier transform infrared spectroscopy, surface free energy, and gel content strongly indicate grafting of EVA onto sisal under the composite preparation conditions, even in the absence of peroxide. The grafting mechanism could not be confirmed from solid‐state 13C NMR analysis. The grafting had an impact on the thermal and mechanical properties of the composites, as determined by differential scanning calorimetry and tensile testing. Thermogravimetric analysis results show that the composites are more stable than both EVA and sisal fiber alone. The composite stability, however, decreases with increasing fiber content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1607–1617, 2006  相似文献   

7.
Starch based thermoplastic composites reinforced by short sisal fibers having length less than 1 mm were fabricated by extrusion followed by compression molding. The sisal fiber content varied from 0 to 10% w/w keeping the amount of glycerol (plasticizer) as constant (23% w/w). Investigation proved that an increase in the amount of sisal fibers will decrease the ductile nature of composites. The Young's modulus and hardness value increases as a function of fiber content. The impact strength varied as a function of fiber content. Contact angle analysis showed that incorporation of sisal fibers to the matrix increases its hydrophilic nature. The polar factor and total surface energy increases as a function of fiber content whereas dispersive factor decreases. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

8.
The variation of the ultimate stress and the elastic modulus of four different natural fiber-resin matrix composites was evaluated as a function of the aging of these composites in distilled water. Their diffusion coefficients and the maximum water content were also determined by fitting the experimental data to the Fickian model for diffusion. The composites analyzed were the common jute- and sisal-polyester matrix as well as jute- and sisal-epoxy resin matrix. The overall mechanical behavior observed could be qualitatively explained by the topographic aspects generated at the fracture surfaces. The jute-epoxy composite showed the best properties over all the immersion times analyzed. A strong fiber-matrix interface was developed for this composite and is partially responsible for its better behavior. The experimental data also show that the sisal fibers are more affected by water than jute fibers.  相似文献   

9.
This article concerns the effectiveness of MAPP as a coupling agent in sisal–polypropylene composites. The fiber loading, MAPP concentration, and fiber treatment time influenced the mechanical properties of the composites. It was observed that the composites prepared at 21 volume percent of fibers with 1% MAPP concentration exhibits optimum mechanical strength. SEM investigations confirmed that the increase in properties is caused by improved fiber‐matrix adhesion. The viscoelastic properties of the treated and untreated composites were also studied. From the storage modulus versus temperature plots, an increase in the magnitude of the peaks was observed with the addition of MAPP and fiber reinforcement, thus showing an improvement in stiffness of the treated composites. The damping properties of the composites, however, decreased with the addition of the fibers and MAPP. The thermal properties of the composites were analyzed through DSC and TGA measurements. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1336–1345, 2004  相似文献   

10.
Natural fiber–biopolymer composites have been prepared using flax and poly(3‐hydroxylbutyrate) bipolyesters (PHB). The biopolyesters consist of the homopolyester PHB and its copolymers with 5 and 12% 3‐hydroxyvalerate (PHV). These biopolymer–natural fiber composites provide structures totally composed of biodegradable and renewable resources. The adhesion between the fibers and the polyesters was better than for analogous polypropylene composites. Wetting of the fibers by the polyesters was observed using scanning electron microscopy. The composites were limited by the properties of the polyesters. PHB is a brittle polymer though flexibility is improved in its copolymers with PHV, but at the expense of crystallization rate. Nucleation was increased by the fibers and silane coupling agent used as adhesion promoter. The melting temperature was influenced by the promoted adhesion and copolymerization. The bending modulus was increased in the composites and dynamic mechanical analysis provided storage modulus of as much as 4 GPa at 25°C with a smaller component as the loss modulus. The maximum in the loss modulus curve was taken as the glass transition temperature, and this increased in the composites. The influence of silane coupling agent was found beneficial for the material properties of the biopolyester–flax composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2114–2121, 2004  相似文献   

11.
利用转矩流变仪测量流变特性的方法,表征了不同剑麻纤维含量下,聚乳酸(PLA)/剑麻复合材料的流变性能,并测量实验后纤维的长度和宽度、PLA分子量,分析剑麻纤维含量和转速对复合材料体系中纤维长度的影响,以及PLA降解情况。结果表明,复合材料的非牛顿指数在纤维含量为10%左右出现峰值,并进一步随含量的增加而减小。复合体系中,刚性剑麻纤维受到来自于转子、聚合物和纤维之间的作用力,纤维被剪短,长径比减小;聚乳酸会受到转速和纤维含量的影响发生降解,这些因素都会影响PLA/剑麻复合材料的流变性能。  相似文献   

12.
In this research, biodegradable composites were prepared with zein as a polymer matrix and oil palm empty fruit bunch (OPEFB) as fiber reinforcement. The fibers were treated with sodium hydroxide (NaOH). The effects of sodium hydroxide treatment on sound absorption, thermal stability, and fiber‐polymer matrix interaction in composites were examined. The acoustical sound absorption coefficients of the composites were evaluated using two‐microphone transfer function impedance tube method. The spectral, thermal, and morphological studies of the composites were analyzed and characterized using scanning electron microscope (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. It was found that in all the biodegradable composites, the sound absorption coefficients increased as the frequency increased. Increases in fiber loading caused sound absorption coefficients of the composites to increase. The sodium hydroxide treatment showed a better interface adhesion on fiber and zein matrix. It was also found that this treatment increased the sound absorption coefficients. This was supported by qualitative analysis on the SEM micrographs and FTIR spectrum. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44164.  相似文献   

13.
Composites based on isotactic polypropylene (PP) and sisal fiber (SF) were prepared by melt mixing and injection molding. The melt mixing characteristics, thermal properties, morphology, crystalline structure, and mechanical behavior of the PP/SF composites were systematically investigated. The results show that the PP/SF composites can be melt mixed and injection molded under similar conditions as the PP homo‐polymer. For the composites with low sisal fiber content, the fibers act as sites for the nucleation of PP spherulites, and accelerate the crystallization rate and enhance the degree of crystallinity of PP. On the other hand, when the sisal fiber content is high, the fibers hinder the molecular chain motion of PP, and retard the crystallization. The inclusion of sisal fiber induces the formation of β‐form PP crystals in the PP/SF composites and produces little change in the inter‐planar spacing corresponding to the various diffraction peaks of PP. The apparent crystal size as indicated by the several diffraction peaks such as L(110)α, L(040)α, L(130)α and L(300)β of the α and β‐form crystals tend to increase in the PP/SF composites considerably. These results lead to the increase in the melting temperature of PP. Moreover, the stiffness of the PP/SF composites is improved by the addition of sisal fibers, but their tensile strength decreases because of the poor interfacial bonding. The PP/SF composites are toughened by the sisal fibers due to the formation of β‐form PP crystals and the pull‐out of sisal fibers from the PP matrix, both factors retard crack growth.  相似文献   

14.
To study the effects of processing conditions on the viscoelastic and mechanical properties of biodegradable composites, we prepared several composites based on sisal fibers and biodegradable polymers. The effects of processing conditions such as the speed of rotation, temperature, and time of mixing were investigated. The mechanical and viscoelastic properties of these composites were affected by the processing conditions. This was principally due to the modification of the initial aspect ratio of the natural fibers as a result of the shear stresses that developed in the mixer during the compounding. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1637–1642, 2003  相似文献   

15.
《Polymer Composites》2017,38(9):1910-1917
The use of environmentally friendly natural fibers as building materials is benefit to achieve a sustainable construction. This article performs a study on the use of natural jute fibers as reinforcement of concrete and natural sisal fibers in fiber reinforced polymer (FRP) composites as concrete confinement, i.e., sisal fiber reinforced concrete (SFRC) composite column wrapped by jute FRP (JFRP) (SFRC‐JFRP). Uniaxial compression test was conducted to assess the compression performance of the composite columns as axial structural member. A total of 24 specimens were tested. The effects of JFRP wrapping thickness and sisal fiber inclusion on the compressive performance of the composite columns were investigated. Results indicate that JFRP confinement significantly increases the compressive strength and ductility of both PC and SFRC with an increase in JFRP thickness. Besides, the inclusion of sisal fiber further enhances the strength as well as the efficiency of confinement under uniaxial compression. Also, the models for ultimate strength and ultimate strain of PC‐JFRP and SFRC‐JFRP are proposed. POLYM. COMPOS., 38:1910–1917, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
The effect of several chemical treatments, viz. organotitanate, zirconate, silane, and N-substituted methacrylamide, on the properties of sisal fibers used as reinforcement in unsaturated polyester resin (∼50 vol%) was investigated. An improvement in the properties was observed when sisal fibers were modified with surface treatments. Under humid conditions, a decrease of 30 to 44% in tensile and 50 to 70% in flexural strength has been noted. The strength retention of surface-treated composites (except silane) is high compared with untreated composites. It is observed that N-substituted methacrylamide-treated sisal composites exhibited better properties under dry as well as wet conditions. Fractographic evidence such as fiber breakage/splitting and matrix adherence on the pulled-out fiber surface explains such behavior.  相似文献   

17.
Mercerization and acetylation treatments were applied to sisal fibers to enhance adhesion with polymer matrices in composites. The structures of the untreated and treated fibers were assessed with scanning electron microscopy. The waste from sisal‐fiber decortication consisted of mechanical, ribbon, and xylem fibers, and their ultimate cells varied considerably in size and shape. After mercerization and acetylation, the fibers and conductive‐vessel surfaces were successfully changed. The parenchyma cells were partially removed, and the fibrils started to split, because of the alkali action. This increased the effective surface area available for contact with the matrix. The mercerized and acetylated fibers were coated with cellulose acetate by the grafting of the acetyl group in the fibrils. The treatment used to remove lignin and hemicellulose caused changes in the fiber surface but did not damage the fiber structure because the fibrils remained joined in a bundle. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2333–2340, 2004  相似文献   

18.
The incorporation of natural fibers with polymer matrix composites (PMCs) has increasing applications in many fields of engineering due to the growing concerns regarding the environmental impact and energy crisis. The objective of this work is to examine the effect of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites. In this experimental study, sisal‐jute‐glass fiber‐reinforced polyester composites are prepared with fiber orientations of 0° and 90° and fiber volume of sisal‐jute‐glass fibers are in the ratio of 40:0:60, 0:40:60, and 20:20:60 respectively, and the experiments were conducted. The results indicated that the hybrid composites had shown better performance and the fiber orientation and fiber content play major role in strength and water absorption properties. The morphological properties, internal structure, cracks, and fiber pull out of the fractured specimen during testing are also investigated by using scanning electron microscopy (SEM) analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42968.  相似文献   

19.
Natural rubber was reinforced with untreated sisal and oil palm fibers chopped to different fiber lengths. The influence of fiber length on the mechanical properties of the hybrid composites was determined. Increasing the fiber length resulted in a decrease in the properties. The effects of concentration on the rubber composites reinforced with sisal/oil palm hybrid fibers were studied. Increasing the concentration of fibers resulted in a reduction in the tensile strength properties and tear strength but an increase in the modulus of the composites. Fiber breakage analysis was evaluated. The vulcanization parameters, processability characteristics, and stress–strain properties of these composites were analyzed. The extent of fiber alignment and the strength of the fiber–rubber interface adhesion were analyzed from the anisotropic swelling measurements. Scanning electron microscopy studies were performed to analyze the fiber/matrix interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2305–2312, 2004  相似文献   

20.
The natural fibers (banana, hemp, and sisal) and high density polyethylene were taken for the preparation of natural fiber/polymer composites in different ratios of 40 : 60 and 45 : 55 (w/w). These fibers were esterified with maleic anhydride (MA) and the effect of esterification of MA was studied on swelling properties in terms of absorption of water, at ambient temperature, and steam. It was found that the steam penetrates more within lesserperiod of time than water at ambient temperature. Untreated fiber composites show more absorption of steam and water in comparison to MA‐treated fiber composites. The more absorption of water was found in hemp fiber composites and less in sisal fiber composites. Steam absorption in MA‐treated and untreated fiber composites are higher than the water absorption in respective fiber composites. The natural fiber/polymer composites containing low amount of fibers show less absorption of steam and water at ambient temperature than the composites containing more amount of fibers in respective fiber composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号