首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
The powder‐particle spouted bed process is one of the semi‐dry processes that have been developed for flue gas desulfurization. In this study, which is designed for SO2 removal by a powder‐particle spouted bed, the reaction term is included in one‐dimensional and streamtube models that were presented previously for spouted beds. Hydrated lime is used as the sorbent in this process. The predictions of the models are compared with some published experimental data and it is found that the developed models are valid. The results of two models are compared with each other and their various properties are evaluated. The effects of different operating conditions on SO2 removal efficiency are also investigated and preferred operating conditions are discussed.  相似文献   

2.
A spouted bed of binary particle mixture was applied to a low temperature desulfurization process in order to develop a new type of semidry flue gas desulfurization (FGD) technology. We investigated the effects of operating parameters, such as type of SO2 sorbent, diameter of SO2 sorbent particles, apparent residence time of gas in the bed, approach to saturation temperature and Ca/S molar ratio, on SO2 removal in a bench-scale powder-particle spouted bed. We also investigated the utilization rate of SO2 sorbent and ways to enhance the efficiency of SO2 removal and SO2 sorbent utilization. The experimental results showed that SO2 removal is significantly affected by the approach to saturation temperature and Ca/S molar ratio, and that a high SO2 removal efficiency and effective sorbent utilization can be obtained under appropriate operating conditions. Thus, this new simple process of flue gas desulfurization is highly efficient and has little impact on the environment.  相似文献   

3.
A novel sorbent, potassium carbonate impregnated on porous fine alumina, was produced, and its reactive and regenerative properties were evaluated for dry‐type simultaneous removal of SO2 and NO from flue gas under stack temperatures, by using a powder‐particle fluidized bed (PPFB) with I.D. of 53 mm as the reactor. High removal efficiencies for SO2 and NO were achieved simultaneously. An apparent beneficial effect of SO2 on the enhancement of NO removal was found based on a large amount of data. The alumina carrier was successfully regenerated and used repeatedly for the production of fresh sorbent particles. With no ammonia, low temperature, high removal efficiency, and no second waste emission as main characteristics, this dry process can be a competitive technology for pollution control of flue gas from power plants in the future.  相似文献   

4.
针对半干法烟气脱硫方法,提出了一种新型的双喷嘴矩形导流管喷动床半干法烟气脱硫装置。在不同的钙硫摩尔比、静床层高度、表观气速、绝热饱和温差下,以消石灰为脱硫剂,研究了该装置的脱硫性能,并与未加导流管的双喷嘴矩形喷动床的脱硫性能进行了比较;研究了不同脱硫剂流量下导流管喷动床的喷动压降。实验结果表明:脱硫率与钙硫摩尔比、静床层高度成正比,与绝热饱和温差、表观气速成反比;喷动压降与脱硫剂流量成反比。并最终得出了实验条件下双喷嘴矩形导流管喷动床的最佳操作范围和脱硫率关联式。  相似文献   

5.
A new semidry flue gas desulfurization (FGD) process is proposed. The process uses a magnetically fluidized bed (MFB) as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. A slurry of lime is continuously sprayed into the reactor by an atomizer fixed at the top of the bed. As a consequence, the desulfurization reaction and slurry drying take place simultaneously in a same reactor. Experiments with a laboratory‐scale apparatus were carried out to investigate the roles of the ferromagnetic particles and the magnetic field applied in the desulfurization reaction. The results show that when ferromagnetic particles are used as the fluidization material, both sulfite (SO32–) salts and sulfate (SO42–) salts are found in the desulfurization products. When quartz particles are used, only sulfite (SO32–) salts are found. This suggests that the Fe(III) ions and Fe(II) ions result from the ferromagnetic particles dissolving in the liquid phase. In addition, the ions act as catalysts in the oxidation of S(IV) to S(VI) and react with SO2 producing FeSO3 and Fe2(SO4)3 as the products. On the other hand, the level of the sulfate (SO42–) salts in the products increases with increasing intensity of applied field intensity, which suggests that the oxidation of S(IV) can be enhanced by the applied magnetic field. The oxidation of S(IV) can increase the solubility of SO2, and therefore, intensify the reaction between SO2 and Ca(OH)2, leading to an increased SO2 removal efficiency.  相似文献   

6.
An internally circulating fluidized bed reactor (ICFBR) was used as a desulfurization apparatus in this study. The height of the bed was 2.5 m, and the inner diameter was 9 cm. The bed materials were calcium sorbent and silica sand. The effects of the operating parameters of the flue gas desulfurization including relative humidity, particle size of the calcium sorbent, inlet concentration of SO2, difference between the superficial gas velocities in the draft tube and the annulus, and superficial gas velocity in the draft tube on SO2 removal efficiency (RE) were investigated. It was found that when the relative humidity (RH) was varied from 40% to 80%, the steady state RE had a largest value of approximately 15% when the relative humidity was 60%. When RH = 50%, 60% and 70%, RE decreased initially and then increased. After that RE decreased again until a steady state was reached. In addition, RE decreased with increasing calcium particle size or inlet SO2 concentration. A larger difference between the superficial gas velocities in the draft tube and the annulus had a higher RE resulting from increasing reactivity of the calcium sorbent caused by a higher attrition rate. Moreover, a higher attrition rate had a higher total volume of the flue gas treated. Finally, a model to predict the steady state RE in ICFBR was proposed. It assumed that the draft tube section was a bubbling fluidized bed while the annulus section was a moving bed. In addition, the effects of the calcium sorbent conversion, attrition rate and gas-bypassing fractions on RE were also taken into account in this model. It was found that the values of RE predicted by this model agreed with the experimental results.  相似文献   

7.
A moderate temperature dry circulating fluidized bed flue gas desulfurization (CFB-FGD) process was developed using rapidly hydrated sorbent. This technique has the advantages of low cost, no water consumption, and a valuable dry product CaSO4. To keep the system operation stable, a mass balance model, based on cell model considering flow state, particle abrasion, particle residence time, particle segregation and desulfurization processes, was built to predict the system state and optimize the operating condition. Experimental studies were conducted on a pilot-scale CFB-FGD system with rapidly hydrated sorbent made from CFB circulating ash and lime (circulating ash sorbent) or coal fly ash and lime (coal fly ash sorbent). Calculated results were compared with experimental results and the relative error was less than 10%. The results indicated that feed sorbent mass, feed sorbent size, superficial gas velocity, particle abrasion coefficient and cyclone efficiency had significant influence on the mass balance of CFB system. The circulating ash sorbent was better than the coal fly ash sorbent, for providing higher desulfurization efficiency and being better for the CFB-FGD system to achieve mass balance.  相似文献   

8.
A mathematical model is developed for investigation of SO2 removal in a powder particle spouted bed (PPSB) for non-isothermal operating condition. For this aim, the stream-tube model which was already validated for such systems is applied for hydrodynamics of solid and gas phases, and then by using the conservation laws of mass and energy, the governing equations for gas and solid phases are derived and solved numerically. The published experimental data in the literature are used to validate the accuracy of the proposed model. The results show that the model is capable of predicting the behaviour of this system properly. Also the optimum performance of this system is investigated by studying the effects of different parameters such as bed height, molar ratio of sorbent to acid gas (Ca/S) and inlet concentration of SO2.  相似文献   

9.
This paper reviews the SO2 emission from a 0.3 m2 stainless‐steel fluidized‐bed combustor. Fine coal was premixed with fine limestone and fed pneumatically under the bed. The SO2 emission was found to depend largely on air staging ratio and bed temperature, which agrees with previous observations. The SO2 emission observed in sorbent‐free tests (reported earlier by Khan and Cibbs, 1995) was found to be proportional to the sulphur content of the fuel when limestone was added, the sulphur capture at a fixed Ca/S molar ratio was dependent on oxygen stoichiometry and bed temperature. Finely sized limestone enhanced the effectivity of the sorbent at low bed temperature and air staging ratio. During staged combustion, the combustion efficiency depended largely on primary air to coal ratio. Around 90% combustion efficiency was observed at 1 m/s fluidizing velocity which was reduced when fluidizing velocity was increased to 1.5 and 2 m/s. This reduction is due to increased elutriation of finer coal particles from the combustor.  相似文献   

10.
Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications. A Fe2O3-based high-temperature coal gas desulfurizer was prepared using red mud from steel factory. The influences of regeneration temperature, space velocity and regeneration gas concentration in SO2 atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor. The changes of phase and the composition of the Fe2O3-based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction (XRD) and X-ray Photoelectron spectroscopy(XPS), and the changes of pore structure were characterized by the mercury intrusion method. The results show that the major products are Fe3O4 and elemental sulfur; the influences of regeneration temperature, space velocity and SO2 concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible. The desulfurization sorbent cannot be regenerated at 500°C in SO2 atmosphere. Within the range of 600°C–800°C, the time of regeneration becomes shorter, and the regeneration conversion increases as the temperature rises. The time of regeneration also becomes shorter, and the elemental sulfur content of tail gas increases as the SO2 concentration in inlet is increased. The increase in space velocity enhances the reactive course; the best VSP is 6000 h?1 for regeneration conversion. At 800°C, 20 vol-% SO2 and 6000 h?1, the regeneration conversion can reach nearly to 90%.  相似文献   

11.
A sulfation model was developed for dry flue gas desulfurization (FGD) at moderate temperatures to describe the reaction characteristics of the T-T sorbent clusters and the fine CaO particles that fall off the sorbent grains in a circulating fluidized bed (CFB) reactor. The cluster model describes the calcium conversion and reaction rate for various size sorbent clusters. The sulfation reaction is first order with respect to the SO2 concentration above 973 K. The calcium conversion and reaction rate for the CaO particles were obtained by extrapolation. In the model for CaO particle, the reaction rate is linearly related to the calcium conversion and the SO2 concentration in the rapid reaction stage and linearly related only with the calcium conversion after the product layer forms. The sulfation model accurately describes the sulfation of the T-T sorbent flowing through a CFB reactor. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

12.
Dry scrubbing with lime slurry in a spray dryer [spray dryer absorber (SDA)] has been an important technology for flue gas desulfurization (FGD). Mathematical models based on the heat and mass balances are used to predict SO2 removal in the SDA as a function of initial size distribution of slurry droplets. Since the existence of moisture in the droplets appreciably enhances the SO2 removal, its removal efficiency depends on the rate of drying as well as that of SO2 removal itself, both depending on droplet diameter. With the increase in the geometric standard deviation (GSD) of the initial droplet size distribution, the efficiency of SO2 removal first increases and then decreases, showing a maximum at a certain value of GSD. This trend is altered by the sorbent content of the droplets, expressed as stoichiometric ratio (SR). The decrease in SR makes the maximum move to higher GSD and reduces the variation in the efficiency with respect to GSD. For SR<0.73, a minimum efficiency also appears, ahead of the maximum. The results are well explained by the specific rates of both drying and SO2 removal of the droplets.  相似文献   

13.
Sulphur dioxide removal using South African limestone/siliceous materials   总被引:1,自引:0,他引:1  
D.O. Ogenga  K.T. Lee  I. Dahlan 《Fuel》2010,89(9):2549-2038
This study presents an investigation into the desulfurization effect of sorbent derived from South African calcined limestone conditioned with fly ash. The main aim was to examine the effect of chemical composition and structural properties of the sorbent with regard to SO2 removal in dry-type flue gas desulfurization (FGD) process. South African fly ash and CaO obtained from calcination of limestone in a laboratory kiln at a temperature of 900 °C were used to synthesize CaO/ash sorbent by atmospheric hydration process. The sorbent was prepared under different hydration conditions: CaO/fly ash weight ratio, hydration temperature (55-75 °C) and hydration period (4-10 h). Desulfurization experiments were done in the fixed bed reactor at 87 °C and relative humidity of 50%. The chemical composition of both the fly ash and calcined limestone had relatively high Fe2O3 and oxides of other transitional elements which provided catalytic ability during the sorbent sorption process. Generally the sorbents had higher SO2 absorption capacity in terms of mol of SO2 per mol of sorbent (0.1403-0.3336) compared to hydrated lime alone (maximum 0.1823). The sorbents were also found to consist of mesoporous structure with larger pore volume and BET specific surface area than both CaO and fly ash. X-ray diffraction (XRD) analysis showed the presence of complex compounds containing calcium silicate hydrate in the sorbents.  相似文献   

14.
J. Mi  G. Feng  L. Han  T. Guo  Y. Zhu  J. Wang 《化学工程与技术》2012,35(9):1626-1631
Cerium oxide‐doped ZnFe2O4 sorbents supported on modified semi‐coke (MSC) were prepared to improve the desulfurization efficiency of zinc ferrites. The sulfidation tests of the ZnFe2O4/MSC sorbents with and without Ce were carried out using a fixed‐bed reactor at 450 °C. The effect of the CeO2/ZnFe2O4 molar ratio of the sorbents on the sulfur capacity was studied. The characteristics of the sorbents were analyzed by X‐ray diffraction, N2 adsorption, scanning electron microscopy and X‐ray photoelectron spectroscopy. The results showed that cerium oxide could greatly improve the desulfurization reactivity of the ZnFe2O4/MSC sorbents. The molar ratio of Ce to Zn and Fe influences the desulfurization reactivity, and a good sulfur capacity of the sorbent can be obtained with a Ce/Zn/Fe ratio of 4:4:1. It was also found that the addition of CeO2 could enlarge the surface area and the pore volume, thus improving the dispersion of active components. Ce doping results in an increment of the oxygen adsorbed on the sorbent surface, which facilitates the adsorption of H2S. The Ce ions could act as carriers of the oxidation and reduction reactions and the oxygen transfer could be accelerated during the desulfurization process of coal gas.  相似文献   

15.
A pilot‐scale study of flue gas desulfurization based on an amine‐based solvent using applicable industrial values was carried out for sulfur dioxide (SO2) removal. The plant consisting of absorption and desorption columns was operated with different working parameters such as solvent flow rate, inlet concentration of SO2, temperature of desorption column, and pH of absorption agent. The Taguchi method was utilized to obtain the best combination of working parameters for the most efficient reduction of SO2 outlet concentration. The industrial gas‐to‐liquid ratio could be optimized by applying a defined SO2 concentration, stripper temperature, and solvent pH value. The achieved efficiency is much better compared to our previous study while the gas‐to‐liquid ratio is higher in this work.  相似文献   

16.
A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO2 absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO2 absorbent employed. When using CaCO3 and NH3·H2O to remove SO2 from flue gas, the fine particle removal efficiencies are lower than those for Na2CO3 and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.  相似文献   

17.
The enhancement mechanism of SO2 removal by the presence of NO2 under low temperature and humid conditions was studied in a fixed bed reactor system. The presence of NO2 in the flue gas can enhance SO2 removal. The interaction between SO2 and NO2 in gas phase could not explain the effect of NO2 on SO2 removal under low-temperature and humid conditions. When Ca(NO3)2 and Ca(NO2)2 as additive were added on the surface of sorbent, the desulfurization activity of sorbent decreased. However, the sorbent pretreated by NO2 for a moment has higher SO2 removal. The oxidization of SO32− to SO42− and the evolution of sorbent surface structure in the presence of NO2 can explain the enhancement of SO2 removal by the presence of NO2. HSO3 and SO3 reacted with NO2 to form sulfate, which can accelerate the hydrolysis of SO2. The reaction between NO2 and Ca(OH)2 can make the unreacted sorbet under the SO2 removal product exposed to the reactant gas.  相似文献   

18.
Sorption of sulfur dioxide (SO2) was carried out on calcium‐based sorbents under dynamic conditions in a fixed bed. The experimental conditions were reaction temperature (700 to 1000°C), SO2 concentration (1000‐10 000 ppm), sorbent particles size (1 to 2 mm) and the types of sorbents (hydroxide or carbonate). The sorption process was found to be effective at low concentration levels (less than 10 000 ppm) as the breakthrough time significantly decreased with increase in concentration. The maximum removal of SO2 was observed at a reaction temperature of 950°C. The hydroxide‐based sorbents of relatively smaller particle size were found to exhibit superior sorption performance in terms of longer breakthrough time and higher sulfate conversion. A mathematical model developed, assuming a porous structure of the sorbent materials, attributed the low sulfation conversion during SO2 sorption due to a pore diffusion mechanism.  相似文献   

19.
A numerical model based on computational fluid dynamics is presented to predict the efficiency of a semi‐dry flue gas desulfurization process. The Euler‐Lagrange particle tracking method is used to predict both evaporation and mass transfer between the flue gas and the lime slurry droplets. The overall desulfurization process is split into two periods, i.e. the constant‐rate and the falling‐rate period, during which the fundamental chemical reaction between sulfur dioxide and calcium hydroxide is modeled. The absorption efficiency is calculated for different spray characteristics, taking into account different size spectra of the lime slurry droplets characterized by different standard deviations for a constant mass mean diameter d50 of 25 μm. The results are compared with published experiments and show excellent agreement as well as a significant role of the spray characteristics in the FGD efficiency.  相似文献   

20.
The reaction between SO2 and calcined limestone particles has been studied in a fluidized bed combustor. Measurements of sorbent reactivity with SO2 were made for small batches of limestone injected into the combustor. Simultaneous continuous combustion of bituminous coal provided conditions like those of a boiler for study of the sulphation reaction. A semi-empirical rate model of the CaO-SO2 reaction has been developed. External mass transfer of SO2, diffusion within the particles and chemical reaction are taken into account. The limestone reactivity with SO2 is characterized by two parameters which are dependent on the temperature and sorbent particle size. A model for predicting the limestone requirements in a fluidized bed boiler has been developed. Parameters from the batch experiments are included. The predictions for sulfur retention agree with the experimental results. In addition, effects of operating conditions (gas velocity, recycle, limestone particle size) on the retention of SO2 were simulated using the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号