首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Seedless fruit is a feature appreciated by consumers. The ovule abortion process is highly orchestrated and controlled by numerous environmental and endogenous signals. However, the mechanisms underlying ovule abortion in pear remain obscure. Here, we found that gibberellins (GAs) have diverse functions during ovules development between seedless pear ‘1913’ and seeded pear, and that GA4+7 activates a potential programmed cell death process in ‘1913’ ovules. After hormone analyses, strong correlations were determined among jasmonic acid (JA), ethylene and salicylic acid (SA) in seedless and seeded cultivars, and GA4+7 treatments altered the hormone accumulation levels in ovules, resulting in significant correlations between GA and both JA and ethylene. Additionally, SA contributed to ovule abortion in ‘1913’. Exogenously supplying JA, SA or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid promoted ‘Bartlett’ seed death. The regulatory mechanism in which ethylene controls ovule death has been demonstrated; therefore, JA’s role in regulating ‘1913’ ovule abortion was investigated. A further study identified that the JA signaling receptor MYC2 bound the SENESCENCE-ASSOCIATED 39 promoter and triggered its expression to regulate ovule abortion. Thus, we established ovule abortion-related relationships between GA and the hormones JA, ethylene and SA, and we determined their synergistic functions in regulating ovule death.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Timely flowering is important for seed formation and maximization of rapeseed (Brassica napus) yield. Here, we performed flowering-time quantitative trait loci (QTL) mapping using a double haploid (DH) population grown in three environments to study the genetic architecture. Brassica 60 K Illumina Infinium™ single nucleotide polymorphism (SNP) array and simple sequence repeat (SSR) markers were used for genotyping of the DH population, and a high-density genetic linkage map was constructed. QTL analysis of flowering time from the three environments revealed five consensus QTLs, including two major QTLs. A major QTL located on chromosome A03 was detected specifically in the semi-winter rapeseed growing region, and the one on chromosome C08 was detected in all environments. Ribonucleic acid sequencing (RNA-seq) was performed on the parents’ leaves at seven time-points in a day to determine differentially expressed genes (DEGs). The biological processes and pathways with significant enrichment of DEGs were obtained. The DEGs in the QTL intervals were analyzed, and four flowering time-related candidate genes were found. These results lay a foundation for the genetic regulation of rapeseed flowering time and create a rapeseed gene expression library for seven time-points in a day.  相似文献   

11.
12.
13.
14.
Leaf rust and powdery mildew are two important foliar diseases in wheat. A recombinant inbred line (RIL) population, obtained by crossing two bread wheat cultivars (‘Victo’ and ‘Spada’), was evaluated for resistance to the two pathogens at seedling stage. Upon developing a genetic map of 8726 SNP loci, linkage analysis identified three resistance Quantitative Trait Loci (QTLs), with ‘Victo’ contributing the resistant alleles to all loci. One major QTL (QPm.gb-7A) was detected in response to Blumeria graminis on chromosome 7A, which explained 90% of phenotypic variation (PV). The co-positional relationship with known powdery mildew (Pm) resistance loci suggested that a new source of resistance was identified in T. aestivum. Two QTLs were detected in response to Puccinia triticina: a major gene on chromosome 5D (QLr.gb-5D), explaining a total PV of about 59%, and a minor QTL on chromosome 2B (QLr.gb-2B). A positional relationship was observed between the QLr.gb-5D with the known Lr1 gene, but polymorphisms were found between the cloned Lr1 and the corresponding ‘Victo’ allele, suggesting that QLr.gb-5D could represent a new functional Lr1 allele. Lastly, upon anchoring the QTL on the T. aestivum reference genome, candidate genes were hypothesized on the basis of gene annotation and in silico gene expression analysis.  相似文献   

15.
Ploidy affects plant growth vigor and cell size, but the relative effects of pollen fertility and allergenicity between triploid and diploid have not been systematically examined. Here we performed comparative analyses of fertility, proteome, and abundances of putative allergenic proteins of pollen in triploid poplar ‘ZhongHuai1’ (‘ZH1’, triploid) and ‘ZhongHuai2’ (‘ZH2’, diploid) generated from the same parents. The mature pollen was sterile in triploid poplar ‘ZH1’. By applying two-dimensional gel electrophoresis (2-DE), a total of 72 differentially expressed protein spots (DEPs) were detected in triploid poplar pollen. Among them, 24 upregulated and 43 downregulated proteins were identified in triploid poplar pollen using matrix-assisted laser desorption/ionisation coupled with time of-flight tandem mass spectrometer analysis (MALDI-TOF/TOF MS/MS). The main functions of these DEPs were related with “S-adenosylmethionine metabolism”, “actin cytoskeleton organization”, or “translational elongation”. The infertility of triploid poplar pollen might be related to its abnormal cytoskeletal system. In addition, the abundances of previously identified 28 putative allergenic proteins were compared among three poplar varieties (‘ZH1’, ‘ZH2’, and ‘2KEN8‘). Most putative allergenic proteins were downregulated in triploid poplar pollen. This work provides an insight into understanding the protein regulation mechanism of pollen infertility and low allergenicity in triploid poplar, and gives a clue to improving poplar polyploidy breeding and decreasing the pollen allergenicity.  相似文献   

16.
17.
The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), ‘Triple Crown’ and ‘Qinghai 444’, with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for ‘Qinghai 444’. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in ‘Triple Crown’ and ‘Qinghai 444’ bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of ‘Qinghai 444’ bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with ‘Triple Crown’. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.  相似文献   

18.
Leaf coloration changes evoke different photosynthetic responses among different poplar cultivars. The aim of this study is to investigate the photosynthetic difference between a red leaf cultivar (ZHP) and a green leaf (L2025) cultivar of Populus deltoides. In this study, ‘ZHP’ exhibited wide ranges and huge potential for absorption and utilization of light energy and CO2 concentration which were similar to those in ‘L2025’ and even showed a stronger absorption for weak light. However, with the increasing light intensity and CO2 concentration, the photosynthetic capacity in both ‘L2025’ and ‘ZHP’ was gradually restricted, and the net photosynthetic rate (Pn) in ‘ZHP’ was significantly lower than that in ‘L2025’under high light or high CO2 conditions, which was mainly attributed to stomatal regulation and different photosynthetic efficiency (including the light energy utilization efficiency and photosynthetic CO2 assimilation efficiency) in these two poplars. Moreover, the higher anthocyanin content in ‘ZHP’ than that in ‘L2025’ was considered to be closely related to the decreased photosynthetic efficiency in ‘ZHP’. According to the results from the JIP-test, the capture efficiency of the reaction center for light energy in ‘L2025’ was significantly higher than that in ‘ZHP’. Interestingly, the higher levels of light quantum caused relatively higher accumulation of QA- in ‘L2025’, which blocked the electron transport and weakened the photosystem II (PSII) performance as compared with ‘ZHP’; however, the decreased capture of light quantum also could not promote the utilization of light energy, which was the key to the low photosynthetic efficiency in ‘ZHP’. The differential expressions of a series of photosynthesis-related genes further promoted these specific photosynthetic processes between ‘L2025’ and ‘ZHP’.  相似文献   

19.
The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography–tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the ‘Aroona’ cultivar and 12 ‘Aroona’ near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for ‘Aroona’ and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in ‘Aroona’ and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号