共查询到20条相似文献,搜索用时 69 毫秒
1.
2.
硅负极材料具有很高的理论比容量(4200mAh/g),但充放电过程中巨大的体积变化导致其循环性能很差,同时较低的电导率以及与常规电解液的不相容性等因素限制了硅作为负极材料在锂离子电池中的应用。因此,目前大部分研究人员都致力于解决其循环性能差的问题。综述了近年来改善硅基负极材料性能的最新进展,指出了硅基材料作为锂离子电池负极材料的研究前景。 相似文献
3.
锂离子电池硅基负极材料研究进展 总被引:1,自引:0,他引:1
硅基负极材料具有比容量大的优点,是高容量锂离子电池理想的负极材料。然而硅基材料在循环过程中容量衰减快,影响了其实用性。从硅复合物粉末和硅薄膜两个重要研究方面对硅基负极材料进行了综述,指出在Si基复合负极材料的研究中,单一途径改性提升循环性能的幅度有限,很难达到实用化阶段。硅的纳米化、无定形化、合金化及复合化等方法的综合运用成为硅基材料研究的主导方向。 相似文献
4.
5.
张磊;曲昌宇;李治庆;董昱免;高培波 《材料导报》2024,(S1):18-23
随着电动汽车和储能技术的飞速发展,目前商用锂离子电池以石墨为负极,比容量低,已无法满足储能需求,因此,开发高比能量的锂离子电池迫在眉睫。采用高比容量的硅锗基负极材料替代传统石墨,可以协同发挥二者优势,提高比容量的同时获得高倍率性能,是制备高能锂离子电池的有效途径。然而,硅锗基负极材料在嵌锂过程中的体积膨胀和结构变化是实际应用过程中面临的关键问题。通过对硅锗基负极材料进行结构设计和组分优化,可以有效改善其电化学性能,对制备高能锂离子电池具有重要意义。本文从结构设计、组分优化及电化学性能方面对现阶段硅锗基负极材料进行了系统综述,并对该类负极材料未来发展进行了展望。 相似文献
6.
7.
8.
9.
随着便携式电子设备和电动汽车的发展,目前广泛使用的锂离子电池已不能满足市场的需求,锂硫电池作为一种非常有前途的高能化学电源,因其高理论比容量(1675 mAh?g-1)和高理论能量密度(2600 Wh?kg-1)引起了研究者的广泛关注.然而,在锂硫电池的发展过程中,一些突出的问题制约了其发展,包括硫本征导电性差、充放电前后体积变化大、较差的循环稳定性以及生成的多硫化物易溶解等.相关研究表明,将硫与金属-有机骨架(MOFs)材料复合,构筑成具有特殊微观结构的复合正极材料,可显著改善其导电性、循环稳定性和多硫化物的溶解等问题.本文从锂硫电池的工作原理出发,总结了MOFs作为硫载体的优势特点,综述了近几年MOFs材料在锂硫电池正极方面的研究进展,最后对锂硫电池MOFs基正极材料未来的研究思路与发展趋势进行了分析和展望. 相似文献
10.
11.
Xiaoming Fan Ting Cai Shuying Wang Zeheng Yang Weixin Zhang 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(30):2300431
Silicon (Si) anode suffers from huge volume expansion which causes poor structural stability in terms of electrode material, solid electrolyte interface, and electrode, limiting its practical application in high-energy-density lithium-ion batteries. Rationally designing architectures to optimize the stress distribution of Si/carbon (Si/C) composites has been proven to be effective in enhancing their structural stability and cycling stability, but this remains a big challenge. Here, metal-organic frameworks (ZIF-67)-derived carbon nanotube-reinforced carbon framework is employed as an outer protective layer to encapsulate the inner carbon-coated Si nanoparticles (Si@C@CNTs), which features dual carbon stress-buffering to enhance the structural stability of Si/C composite and prolong their cycling lifetime. Finite element simulation proves the structural advantage of dual carbon stress-buffering through significantly relieving stress concentration when Si lithiation. The outer carbon framework also accelerates the charge transfer efficiency during charging/discharging by the improvement of lithium-ion diffusion and electron transport. As a result, the Si@C@CNTs electrode exhibits excellent long-term lifetime and good rate capability, showing a specific capacity of 680 mAh g−1 even at a high rate of 1 A g−1 after 1000 cycles. This work provides insight into the design of robust architectures for Si/C composites by stress optimization. 相似文献
12.
Yoga Trianzar Malik Seo-Yeon Shin Jin Il Jang Hyung Min Kim Sangho Cho Young Rag Do Ju-Won Jeon 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(9):2206141
Despite of extremely high theoretical capacity of Si (3579 mAh g−1), Si anodes suffer from pulverization and delamination of the electrodes induced by large volume change during charge/discharge cycles. To address those issues, herein, self-healable and highly stretchable multifunctional binders, polydioxythiophene:polyacrylic acid:phytic acid (PEDOT:PAA: PA, PDPP) that provide Si anodes with self-healability and excellent structural integrity is designed. By utilizing the self-healing binder, Si anodes self-repair cracks and damages of Si anodes generated during cycling. For the first time, it is demonstrated that Si anodes autonomously self-heal artificially created cracks in electrolytes under practical battery operating conditions. Consequently, this self-healable Si anode can still deliver a reversible capacity of 2312 mAh g−1 after 100 cycles with remarkable initial Coulombic efficiency of 94%, which is superior to other reported Si anodes. Moreover, the self-healing binder possesses enhanced Li-ion diffusivity with additional electronic conductivity, providing excellent rate capability with a capacity of 2084 mAh g−1 at a very high C-rate of 5 C. 相似文献
13.
Xiaochen Sun;Xuan Gao;Zhuo Li;Xin Zhang;Xiaoli Zhai;Qiuxia Zhang;Liuan Li;Nan Gao;Guanjie He;Hongdong Li; 《Small Methods》2024,8(1):2300746
The novel design of carbon materials with stable nanoarchitecture and optimized electrical properties featuring simultaneous intercalation of lithium ions (Li+) and sodium ions (Na+) is of great significance for the superb lithium–sodium storage capacities. Biomass-derived carbon materials with affluent porosity have been widely studied as anodes for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, it remains unexplored to further enhance the stability and utilization of the porous carbon skeleton during cycles. Here, a lotus stems derived porous carbon (LPC) with graphene quantum dots (GQDs) and intrinsic carbon nanowires framework (CNF) is successfully fabricated by a self-template method. The LPC anodes show remarkable Li+ and Na+ storage performance with ultrahigh capacity (738 mA h g−1 for LIBs and 460 mA h g−1 for SIBs at 0.2 C after 300 cycles, 1C≈372 mA h g−1) and excellent long-term stability. Structural analysis indicates that the CNFs-supported porous structure and internal GQDs with excellent electrical conductivity contribute significantly to the dominant capacitive storage mechanism in LPC. This work provides new perspectives for developing advanced carbon-based materials for multifunctional batteries with improved stability and utilization of porous carbon frameworks during cycles. 相似文献
14.
Hao Wu;Hong Wen;Chen Wang;Fenghui Li;Yifan Chen;Liwei Su;Lianbang Wang; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(37):2311779
Micrometer-sized Si particles are beneficial to practical lithium-ion batteries in regard to low cost and high volumetric energy density in comparison with nanostructured Si anodes. However, both the issues of electrical contact loss and overgrowth of solid electrolyte interface for microscale Si induced by colossal volume change still remain to be addressed. Herein, a scalable and template-free method is introduced to fabricate yolk-shell structured Si anode from commercially available Si microparticles. The void is created via a one-step alkali etching process with the remaining silicon core as the yolk, and a double-walled shell is formed from simultaneous in situ growth of the conformal native oxide layer and subsequent carbon coating. In this configuration, the well-defined void spaces allow the Si core to expand without compromising structural integrity, while the double-walled shell acts as a static capsule to confine silicon fragments despite likely particle fracture. Therefore, electrical connectivity is maintained on both the particle and electrode level during deep galvanostatic cycling, and the solid-electrolyte interface is stabilized on the shell surface. Owing to the benefits of tailored design, excellent cycling stability (capacity retention of 95% after 100 cycles) and high coulombic efficiency (99.5%) are realized in a practical full-cell demonstration. 相似文献
15.
Ziyang Wang;Meng Yao;Hang Luo;Changhaoyue Xu;Hao Tian;Qian Wang;Hao Wu;Qianyu Zhang;Yuping Wu; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(5):2306428
Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core–shell heterostructure, Si as the core and V3O4@C as the shell (Si@V3O4@C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V3O4 layer facilitates the rapid Li+ diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V3O4@C electrode exhibits an excellent cycling stability of 1061.1 mAh g−1 at 0.5 A g−1 over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V3O4@C||LiFePO4 full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs. 相似文献
16.
Anyu Su Jian Li Jiajun Dong Di Yang Gang Chen Yingjin Wei 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(24)
The fabrication of silicon (Si) anode materials derived from high silica‐containing plants enables effective utilization of subsidiary agricultural products. However, the electrochemical performances of synthesized Si materials still require improvement and thus need further structural design and morphology modifications, which inevitably increase preparation time and economic cost. Here, the conversion of corn leaves into Si anode materials is reported via a simple aluminothermic reduction reaction without other modifications. The obtained Si material inherits the structural characteristics of the natural corn leaf template and has many inherent advantages, such as high porosity, amorphous/crystalline mixture structure, and high‐valence SiOx residuals, which significantly enhance the material's structural stability and electrode adhesive strength, resulting in superior electrochemical performances. Rate capability tests show that the material delivers a high capacity of 1200 mA h g?1 at 8 A g?1 current density. After 300 cycles at 0.5 A g?1, the material maintains a high specific capacity of 2100 mA h g?1, with nearly 100% capacity retention during long‐term cycling. This study provides an economical route for the industrial production of Si anode materials for Lithium‐Ion batteries. 相似文献
17.
18.
Si Yi;Zhilin Yan;Yiming Xiao;Zhen Wang;Cuicui Ye;Jingwen Zhang;Huangjie Qiu;Pengpeng Ning;Deren Yang;Ning Du; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(46):2403847
Silicon monoxide (SiO) has attracted considerable interest as anode material for lithium-ion batteries (LIBs). However, their poor initial Coulombic efficiency (ICE) and conductivity limit large-scale applications. Prelithiation and carbon-coating are common and effective strategies in industry for enhancing the electrochemical performance of SiO. However, the involved heat-treatment processes inevitably lead to coarsening of active silicon phases, posing a significant challenge in industrial applications. Herein, the differences in microstructures and electrochemical performances between prelithiated SiO with a pre-coated carbon layer (SiO@C@PLi) and SiO subjected to carbon-coating after prelithiation (SiO@PLi@C) are investigated. A preliminary carbon layer on the surface of SiO before prelithiation is found that can suppress active Si phase coarsening effectively and regulate the post-prelithiation phase content. The strategic optimization of the sequence where prelithiation and carbon-coating processes of SiO exert a critical influence on its regulation of microstructure and electrochemical performances. As a result, SiO@C@PLi exhibits a higher ICE of 88.0%, better cycling performance and lower electrode expansion than SiO@PLi@C. The pouch-type full-cell tests demonstrate that SiO@C@PLi/Graphite||NCM811 delivers a superior capacity retention of 91% after 500 cycles. This work provides invaluable insights into industrial productions of SiO anodes through optimizing the microstructure of SiO in prelithiation and carbon-coating processes. 相似文献
19.
Yanling Dong Biao Zhang Fugui Zhao Feng Gao Dong Liu 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(24):2206858
High-capacity anode materials (e.g., Si) are highly needed for high energy density battery systems, but they usually suffer from low initial coulombic efficiency (CE), short cycle life, and low-rate capability caused by large volume changes during the charge and discharge process. Here, a novel dendrimer-based binder for boosting the electrochemical performance of Si anodes is developed. The polyamidoamine (PMM) dendrimer not only can be used as binder, but also can be utilized as a crosslinker to construct 3D polyacrylic acid (PAA)-PMM composite binder for high-performance Si microparticles anodes. Benefiting from maximum interface interaction, strong average peeling force, and high elastic recovery rate of PAA-PMM composite, the Si electrode based on PAA-PMM achieves a high specific capacity of 3590 mAh g−1 with an initial CE of 91.12%, long-term cycle stability with 69.80% retention over 200 cycles, and outstanding rate capability (1534.8 mAh g−1 at 3000 mA g−1). This work opens a new avenue to use dendrimer chemistry for the development of high-performance binders for high-capacity anode materials. 相似文献
20.
Adjmal Ghaur Felix Pfeiffer Diddo Diddens Christoph Peschel Iris Dienwiebel Leilei Du Laurin Profanter Matthias Weiling Martin Winter Tobias Placke Sascha Nowak Masoud Baghernejad 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(44):2302486
Effective electrolyte compositions are of primary importance in raising the performance of lithium-ion batteries (LIBs). Recently, fluorinated cyclic phosphazenes in combination with fluoroethylene carbonate (FEC) have been introduced as promising electrolyte additives, which can decompose to form an effective dense, uniform, and thin protective layer on the surface of electrodes. Although the basic electrochemical aspects of cyclic fluorinated phosphazenes combined with FEC were introduced, it is still unclear how these two compounds interact constructively during operation. This study investigates the complementary effect of FEC and ethoxy(pentafluoro)cyclotriphosphazene (EtPFPN) in aprotic organic electrolyte in LiNi0.5Co0.2Mn0.3O ∥ SiOx/C full cells. The formation mechanism of lithium ethyl methyl carbonate (LEMC)-EtPFPN interphasial intermediate products and the reaction mechanism of lithium alkoxide with EtPFPN are proposed and supported by Density Functional Theory calculations. A novel property of FEC is also discussed here, called molecular-cling-effect (MCE). To the best knowledge, the MCE has not been reported in the literature, although FEC belongs to one of the most investigated electrolyte additives. The beneficial MCE of FEC toward the sub-sufficient solid-electrolyte interphase forming additive compound EtPFPN is investigated via gas chromatography-mass spectrometry, gas chromatography high resolution-accurate mass spectrometry, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, and scanning electron microscopy. 相似文献