首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 999 毫秒
1.
采用管地电位测量、电位梯度测量、杂散电流智能测试仪(SCM)测量等多种方法对某输油管道杂散电流干扰进行检测评价。结果表明:管道受到较严重的直流杂散电流干扰,杂散电流在SH060~SH100管段流入,导致全线阴保关闭后该管段电位偏负,而集中从SH016~SH020管段流出,使得该管段阴极保护电位难以达到正常水平。提出管道杂散电流整治措施与初步方案,为管道的维修、维护与监控提供依据。通过检测杂散电流干扰,分析主要问题并探索解决方案,降低杂散电流对输油管道的影响。  相似文献   

2.
采用试片法及数据记录仪等测试方法对受地铁直流干扰影响管道进行了专项调查;并测试了管道长时间的通/断电电位。结果表明,在0~64km的管段(两端有绝缘接头)受到直流杂散电流干扰严重,管道在白天的极化电位正向偏移超过标准的要求,需要进行直流杂散电流排流。距地铁64~130km的管段(绝缘接头之后)也受到直流杂散电流干扰,但影响较小。  相似文献   

3.
通过同步监测(有轨)电车的轨地电位和管道通/断电电位,研究了超级电容储能供电型有轨电车对埋地钢质管道的杂散电流干扰。结果表明:电车在车站充电时,铁轨轨地电位有明显的正负向偏移,杂散电流通过铁轨吸收和排放。管道受电车杂散电流干扰影响时,通电电位为-7.060~3.023 V(相对铜/硫酸铜参比电极,CSE),断电电位为-1.219~-0.143 VCSE,沿线多处管道断电电位正于-0.85 V,不满足阴保准则,干扰影响范围远大于97 km。管道靠近与远离电车的管段互为杂散电流流入和流出的区域,且靠近电车管段的干扰程度更大。电车在牵引变电站供电范围内的车站充电时,铁轨轨地电位上升,铁轨流出的杂散电流就近流入电车附近的管段,杂散电流顺着管道往远离电车的方向流动,在远离电车的管段流出。  相似文献   

4.
虹桥机场航油管道受地铁直流杂散电流影响,部分管道阴极保护电位无法达到保护要求,管道存在极高的电化学腐蚀风险。对航油管道的干扰情况进行检测,采取以排流保护和阴极保护相结合的综合防护措施。结果表明:管道保护电位达到保护要求,地铁对管道造成的杂散电流干扰危害得到有效消除。  相似文献   

5.
地表电位梯度指标容易检测,但根据现有标准难以获得管道杂散干扰腐蚀的有用信息.本文采用新的方法测量电位梯度,并根据测量数据,解析出二种电流成分:地表干扰电流和流入(出)管道的电流;后者和实际杂散干扰腐蚀有良好相关,电流流出管道的位置代表阴极保护管道的腐蚀活性点.  相似文献   

6.
直流杂散电流干扰引起管道阴极保护电位异常波动,导致管道阴极保护欠保护或者过保护,增大外腐蚀风险。通过对管道阴极保护电位长期监测数据波动规律分析、频谱分析以及干扰源调查分析,找出电位异常波动原因及干扰机理。生产实践发现,东北某长输管道k1~k205段约200 km管道自投产以来管道阴极保护电位波动剧烈,监测期间管道阴极保护通电电位最正达9VCSE,最负达-14 VCSE,远远超出正常的阴极保护电位水平。研究表明:该段管道直流杂散电流干扰具有长程(200 km)、低频直流特性(0.0001~0.001Hz)和全天候干扰的规律,分析该杂散电流干扰为地磁干扰;建议对k1~k205段管道采用恒电流阴极保护,并加密埋设腐蚀试片或者腐蚀监测探针,长期监测腐蚀速率,评价地磁干扰的影响程度。  相似文献   

7.
采用试片断电法和电位监测系统,对广东地区的某天然气管道进行24h的通/断电电位检测和长期监测,发现管道存在明显的直流杂散电流干扰。电位检测和监测结果分析表明:广东地区的天然气管道同时存在高压直流输电系统不平衡电流、单极大地回路电流和地铁杂散电流干扰;管段由于直流杂散电流的干扰,造成阀室内绝缘卡套放电烧蚀、恒电位仪内部元器件烧毁、恒电位仪无法正常运行以及全线管道的不同位置均有管体腐蚀发生。管体腐蚀最严重的位置腐蚀深度已经达到3.69mm,此位置管道在高压直流接地极输电系统单极大地运行模式时受干扰严重管道电位能达到-174.6V。同时,由于高压直流输电系统的不平衡电流和地铁杂散电流的叠加干扰,造成管道长时间处于欠保护状态,多个因素共同作用综合造成此段管道腐蚀严重。  相似文献   

8.
埋地钢质管道在ECDA检测过程中,经常使用CIPS方法检测阴极保护电位,然而阴极保护系统在受到杂散电流干扰时,所测量的电位波动极大,检测结果无法应用于阴极保护系统的评价。因此需要寻找能够适用于在杂散电流干扰下CIPS所测电位的校正方法,排除杂散电流的干扰获取有效的阴极保护电位。  相似文献   

9.
设计室内干扰试验,模拟现实中各类因素下交流杂散电流干扰对管道阴极保护电位的影响。通过数据采集系统对电位信号的采集,滤波系统对交、直流信号的分离,分析得到交流干扰下管道真实阴极保护电位的变化。结果表明:在交流干扰下的管道阴极保护电位会产生较大的IR降,使得管道真实的阴极保护电位偏离地表参比法测得的电位值;同时,在交流杂散电流干扰的瞬间,将会有一个较强的电位信号产生,可能会对恒电位仪及管道防腐蚀层产生不利影响。  相似文献   

10.
城市轨道交通对埋地管道造成了严重直流杂散电流干扰。为了了解直流杂散电流对管道的影响,选取一段受杂散电流干扰较为严重的管道,采用接地排流和极性排流相结合的方式,在牺牲阳极处安装极性排流器,并连续检测排流前后测试桩处的阴极保护电位。对比数据表明,管道保护电位达到正常值,管道受到有效保护。  相似文献   

11.
动态直流杂散电流干扰会导致管道电位持续波动,传统恒电位仪以“恒电位”模式运行时无法根据管道保护电位进行实时调整,阴极保护效果不理想。介绍了一种以断电电位为控制电位运行的新型数控高频开关恒电位仪,并在某管道进行了现场测试。测试结果表明:配合土壤管测量断电电位,新型恒电位仪在动态直流杂散电流干扰下控制电位准确、调整实时、运行平稳,显著提升了线路的阴极保护效果。  相似文献   

12.
深圳地铁发展迅猛,泄漏到大地中的杂散电流可导致埋地管道腐蚀加速。对深圳地铁杂散电流干扰下的输水管道进行检测,确定管道的自腐蚀电位,探讨试片材质和表面状态对检测结果的影响,同时研究了管道受杂散电流干扰的规律。结果表明:杂散电流干扰程度与地铁和管道的相对位置有一定的关系,随着管道与地铁间距离减小,管道受到杂散电流干扰越来越严重;并且在相同距离下,交叉段受到干扰程度要大于平行段。同时不同材质的管道抗干扰能力也不相同。  相似文献   

13.
埋地钢质管道受地铁动态直流杂散电流干扰的缓解是管道界的一个难题。本工作尝试使用强制电流阴极保护的方式,用强化的阴极保护电流缓解地铁动态干扰对管道的腐蚀影响。馈电试验有助于选取合适的强制电流阳极地床位置以及强制电流阴极保护系统的输出,取得最优的排流效果。  相似文献   

14.
对于受地铁动态直流杂散电流干扰的埋地钢质原油管道,采用试片电位采集仪测量了阴极保护极化试片的断电电位。结果表明,该测试方法简便易行、数据准确可靠,与传统测试方法相比具有较大的技术优势。  相似文献   

15.
某输气管道受地铁杂散电流干扰影响,阴极保护电位波动大,且长时间正于-850 mV(相对于CSE),阴极保护系统受干扰严重,管道受阴极保护效果未知。为了解管道真实阴极保护状况,对沿线管道土壤电阻率进行测试,对管道通断电电位进行了24 h监测,确定了管道最小阴极保护电位,并评估了管道阴极保护状况。基于管道干扰风险分析结果,调整了阴极保护站输出参数,并开展了现场馈电试验。通过连续的馈电测试,获得了较优的干扰防护措施。  相似文献   

16.
北京市轨道交通发展迅猛,泄漏到大地的杂散电流日益增多,这些杂散电流会对埋地燃气管道造成干扰。本文对北京市埋地燃气管道所受地铁杂散电流干扰情况进行了现场检测,分析了干扰的程度和范围;研究了管道与地铁相对位置对杂散电流干扰的影响规律,同时探讨了北京地区地铁杂散电流干扰下管地电位的波动特性。结果表明:随着管道与地铁间距的减小,干扰越来越严重,并且在相同间距下交叉点的干扰程度大于并行段。地铁检修站附近的管道受杂散电流干扰更大。北京地区地铁杂散电流干扰下管地电位的波动周期主要分布在50~200 s间。  相似文献   

17.
2020~2021年期间,国内某石化公司公用工程部厂外污水排水管线不同位置先后出现3次外腐蚀泄漏。管道检测、试验、评估及分析表明,腐蚀泄漏原因为该埋地管受附近地铁直流杂散电流干扰,造成管道管地电位正向偏移,保护电位不达标,另外管道表面防腐层缺陷,加速管道腐蚀,从而导致泄漏;并根据腐蚀泄漏原因,提出了相关防护建议措施。  相似文献   

18.
近年来国内高压输电系统、电气化铁路、城市轨道交通等基建项目飞速发展,这些基础设施在改善了人民日常生活水平的同时,也给埋地钢质管道的安全运营带来了十分严重的影响。受杂散电流影响,埋地钢质管道的阴极保护系统无法正常运行,管道腐蚀速度加快,杂散电流干扰严重的管段可能在短时间内就发生穿孔失效事故,当前运营单位对杂散电流检测手段较为单一,对于杂散电流往往无法根治,通过对管道电位科学的长时间监测以及通过管中电流法实施检测,为钢质管道杂散电流的防护与治理提供有效解决方案。  相似文献   

19.
介绍了一种新型的极化试片电流测试方法。该技术采用高精度数据记录仪监测受到动态直流杂散电流干扰的极化试片中流进、流出的直流电流。该结果可以用于埋地钢质管道直流杂散电流干扰的评价,为查找直流杂散电流干扰腐蚀风险点提供依据。  相似文献   

20.
根据相关标准规定,钢制埋地管道阴极保护效果评价应采用断电电位指标,现场测试通常使用同步中断法,但其并不适用于无法同步中断管中阴极保护电流、以及受杂散电流干扰的管段。阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。本文详细介绍了管道阴极保护电位检查片的适用范围、设计、安装、测试及分析等内容,通过具体实施案例明确了数据记录的规范性,并验证了测试方法的可行性,为该方法的推广应用奠定实践基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号