首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

2.
During alcohol fermentation, the carbon isotope composition of ethyl alcohol produced depended on the substrate used and was characterized by the value of delta 13C equal to -24.7 +/- 0.8/1000 (wheat grain), -22 +/- 0.1/1000 (rye grain), -22 +/- 0.5/1000 (products of wood hydrolysis), -15.3 +/- 0.3/1000 (maize grain) and -10 +/- 0.1/1000 (sugar cane). The isotope composition of carbon of ethyl alcohol obtained during catalytic hydroxylation of ethylene has a delta 13C of -30.6 +/- 0.3/1000. The possibility of quantitative determination of specific components in mixtures of ethanol samples with various isotope compositions (chemical synthesis and alcohol fermentation of raw material from C3- or C4-plants) was shown.  相似文献   

3.
新疆阿勒泰地区近440年来大气δ^13C变化   总被引:9,自引:2,他引:7  
化石燃料的大量使用和森林的过度砍伐,引起大气中CO2浓度的大幅度增加,同时由于Suess效应,大气CO2中的δ13C在不断地下降.植物中δ13C的变化是大气CO2浓度和同位素比值变化的敏感指示器.文中利用树木年轮δ13C序列和植物碳同位素分馏模型,尝试恢复了新疆阿勒泰地区近440年来大气δ13C的变化.结果表明,1850年之前,从树木年轮δ13C序列恢复的大气δ13C相对恒定在-6.60%0(R2=0.052),而1850年之后,该大气δ13C明显降低(R2=0.65)。平均约为-7.04‰,平均年降低0.0084‰.这一结果高于从冰芯气泡所恢复的大气δ13C,1850年~1981年冰芯大气δ13C平均年降低约0.0065‰.这可能与从树木年轮δ13C序列恢复的大气δ13C有更高的分辨率及树木生长点大气δ13C不同于全球大气δ13C值有关.  相似文献   

4.
Degradation of phenanthrene by strains Pseudomonas putida BS3701 (pBS1141, pBS1142), Pseudomonas putida BS3745 (pBS216), and Burkholderia sp. BS3702 (pBS1143) was studied in model soil systems. The differences in accumulation and uptake rate of phenanthrene intermediates between the strains under study have been shown, Accumulation of 1-hydroxy-2-naphthoic acid in soil in the course of phenanthrene degradation by strain BS3702 (pBS143) in a model system has been revealed. The efficiency of phenanthrene biodegradation was assessed using the mathematical model proposed previously for assessment of naphthalene degradation efficiency. The efficiency of degradation of both phenanthrene and the intermediate products of its degradation in phenanthrene-contaminated soil is expected to increase with the joint use of strains P. putida BS3701 (pBS1141, pBS1142) and Burkholderia sp. BS3702 (pBS1143).  相似文献   

5.
The aragonite constructions of the Black Sea are formed in a stable anaerobic zone and are a perfect object to study the natural mechanism of anaerobic methane oxidation. The most probable pathway of methane oxidation is its methanogen-mediated reaction with bicarbonates, dissolved in seawater, with the formation of water and acetate, which is then consumed by other components of the anaerobic community. Comparison of the delta 13C values of carbonate minerals and organic matter once more demonstrated that the formation of the organic matter of biomass is accompanied by intense fractionation of carbon isotopes, as a result of which the total organic matter of biomass acquires an extremely light isotopic composition, characterized by delta 13C values as low as -83.8@1000.  相似文献   

6.
暖温带地区几种木本植物碳稳定同位素的特点   总被引:17,自引:1,他引:16  
通过对暖温带落叶阔叶林生态系统主要乔、灌木植物叶片、树干、花、果实碳稳定性同位素比率(δ^13C值)测定和比较,发现这些植物叶片的δ^13C值受多种因子的影响,具有较大的种间差异及时空异质性,主要表现在不同植物δ^13C值不同;种内δ^13值变化也很大,以荆条的差异最大,为6.549‰(-22.226‰--28.775‰);其次是大叶白蜡5.706‰(-23.687‰--29.393‰);核桃秋5  相似文献   

7.
The biogeochemical processes of methane production and oxidation were studied in the upper horizons of tundra and taiga soils and of raised bogs and lake bottom sediments nearby the Tarkosalinsk gas field in western Siberia. Both in dry and water-logged soils, the total methane concentration (in soil particles and gaseous phase) was an order of magnitude higher than in the soil gaseous phase alone (22 and 1.1 nl/cm3, respectively). In bogs and lake bottom sediments, methane concentration was as high as 11 microliters/cm3. Acetate was the major precursor of the newly formed methane. The rate of aceticlastic methanogenesis reached 55 ng C/(cm3 day), whereas that of autotrophic methanogenesis was an order of magnitude lower. The most active methane production and oxidation were observed in bogs and lake sediments where the delta 13C values of CO2 were inversely related to the intensity of bacterial methane oxidation. Methane diffusing from bogs and lake bottom sediments showed delta 13C values ranging from -78 to -47@1000, whereas the delta 13C value of carbon dioxide ranged from -18 to -6@1000. In these ecosystems, methane emission comprised from 3 to 206 mg CH4/(m2 day). Conversely, the dry and water-logged soils of tundra and taiga took up atmospheric methane at a rate varying from 0.3 to 5.3 mg CH4/(m2 day). Methane consumption in soils was of biological rather than of adsorptive nature. This was confirmed by the radioisotopic method and chamber experiments, in which weighting of methane carbon was observed (the delta 13C value changed from -51 to -41@1000).  相似文献   

8.
Beech seedlings from 11 German climatic provenances were exposed to a realistically timed drought treatment in a greenhouse experiment. The stable isotope composition of carbon (C) and nitrogen (N) was analysed in pooled bulk material of roots, stems and leaves, as well as in the aqueous extracts and starch fractions. The delta 13C values increased in bulk samples (BS) of roots, stems and leaves by drought, although no leaf growth occurred during the experimental period. A clear drought effect on delta 13C in aqueous extracts was detected in leaves. In aqueous extracts of stems and roots as well as in starch fractions of all organs, abundance of delta 13C also tended to be increased by drought, but this effect was not statistically significant. For both delta 13C and delta 15N, enrichment was observed from the site of uptake/ source to the site of use/sink. A gradient for delta 13C in all fractions from leaves (-29.49, -28.89 and -27.85 per thousand) to stems (-28.81, -27.48 and -26.98 per thousand) and to roots (-27.60, -26.37 and -26.48 per thousand) was detected in BS, aqueous extracts and starch, respectively. An opposite gradient for delta 15N was found in BS: 1.59 per thousand, 1.84 per thousand and 3.05 per thousand in roots, stems and leaves, respectively. delta 15N was neither affected by drought in the BS nor in aqueous extracts, but an effect of provenance was observed. Particularly in roots and stems, drought-sensitive provenances showed the strongest shifts in delta 13C induced by drought and the lowest delta 15N values. In the present experiment, delta 13C values were more affected by the environmental factor drought, while delta 15N values were more affected by the genetic factor provenance.  相似文献   

9.
The effect of glucose on microbial mineralization of soil organic matter (SOM) was studied in arable soil specimens. The flows of carbon dioxide generated during this degradation were deduced from differences in the carbon isotope ratios of glucose (delta13C = -11.4 per mil) and SOM (delta13C = -27.01 per mil). The priming effect of glucose and respiratory quotient (RQ) were taken as indices of activation of SOM-consuming microbiota. The data on microbial mineralization of organic matter in soil, obtained in this study, show that addition of a readily consumable substance (glucose) to soil favors SOM degradation and increases the release of carbon dioxide from soil to atmosphere.  相似文献   

10.
The thermophilic aerobic bacterium Bacillus thermoleovorans Hamburg 2 grows at 60 degrees C on naphthalene as the sole source of carbon and energy. In batch cultures, an effective substrate degradation was observed. The carbon balance, including naphthalene, metabolites, biomass, and CO(2), was determined by the application of [1-(13)C]naphthalene. The incorporation of naphthalene-derived carbon into the bulk biomass as well as into specified biomass fractions such as fatty acids and amino acids was confirmed by coupled gas chromatography-mass spectrometry (GC-MS) and isotope analyses. Metabolites were characterized by GC-MS; the established structures allow tracing the degradation pathway under thermophilic conditions. Apart from typical metabolites of naphthalene degradation known from mesophiles, intermediates such as 2, 3-dihydroxynaphthalene, 2-carboxycinnamic acid, and phthalic and benzoic acid were identified for the pathway of this bacterium. These compounds indicate that naphthalene degradation by the thermophilic B. thermoleovorans differs from the known pathways found for mesophilic bacteria.  相似文献   

11.
We present the analysis of the stable carbon isotope compositions of 14 individual N-pivaloyl-isopropyl (NPP) amino acid esters by gas chromatography-combustion isotope ratio mass spectrometry (GC-C-IRMS). The mean reproducibility of derivatization procedure and GC-C-IRMS analysis was 0.45 per thousand (range, 0.12-0.68), whereas the mean analytical error was 0.26 per thousand delta(13)C (range, 0.13-0.42). Furthermore, the delta(13)C values of N-pivaloyl-isopropyl and N-acetyl-n-propyl (NAP) amino acid esters were compared. Due to a reproducible isotopic fractionation introduced by the derivatization process an empirical correction factor for each individual amino acid was derived separately for both derivatives (NPP, -1.13 to -2.52 (lysine, +2.09) per thousand delta(13)C; NAP, -2.36 to -3.97 (lysine, +1.91) per thousand delta(13)C), and the original delta(13)C value of the underivatized amino acid was calculated. Further, we performed an animal study where rats (n = 5) ingested a mixed meal containing uniformly (13)C-labeled casein (indispensable amino acids 1.3 to 1.7 at.%). One hour after the meal delta(13)C values of protein-bound amino acids from small intestinal mucosa and liver and of free amino acids from mucosa and plasma were determined. Significant (13)C enrichments of indispensable amino acids of the free pools of mucosa and plasma (range, 0.0518 to 0.1700 at.% excess) and in mucosa and liver proteins (range, 0.0021 and 0.0161 at.% excess) were observed. The feasibility of various derivatives for the measurement of carbon isotopic composition is discussed.  相似文献   

12.
Many nutritive symbioses between chemoautotrophic bacteria and invertebrates, such as Solemya velum, have delta(13)C values of approximately -30 to -35%, considerably more depleted than phytoplankton. Most of the chemoautotrophic symbionts fix carbon with a form IA ribulose 1,5-bisphosphate carboxylase (RubisCO). We hypothesized that this form of RubisCO discriminates against (13)CO(2) to a greater extent than other forms. Solemya velum symbiont RubisCO was cloned and expressed in Escherichia coli, purified and characterized. Enzyme from this recombinant system fixed carbon most rapidly at pH 7.5 and 20-25 degrees C. Surprisingly, this RubisCO had an epsilon-value (proportional to the degree to which the enzyme discriminates against (13)CO(2)) of 24.4 per thousand, similar to form IB RubisCOs, and higher than form II RubisCOs. Samples of interstitial water from S. velum's habitat were collected to determine whether the dissolved inorganic carbon (DIC) could contribute to the negative delta(13)C values. Solemya velum habitat DIC was present at high concentrations (up to approximately 5 mM) and isotopically depleted, with delta(13)C values as low as approximately -6%. Thus environmental DIC, coupled with a high degree of isotopic fractionation by symbiont RubisCO likely contribute to the isotopically depleted delta(13)C values of S. velum biomass, highlighting the necessity of considering factors at all levels (from environmental to enzymatic) in interpreting stable isotope ratios.  相似文献   

13.
The contribution of growth and turnover to the muscle delta(13)C change process was investigated using mathematical models which associate delta(13)C change to time of intake of a new diet or increase in body mass. Two groups of Nile tilapia (Oreochromis niloticus) were fed on diets based on C3 (delta(13)C=-25.64+/-0.06 per thousand) or C4 (delta(13)C=-16.01+/-0.06 per thousand) photosynthetic cycle plants to standardize the muscle delta(13)C. After establishing the carbon isotopic equilibrium, fish (mean mass 24.12+/-6.79 g) then received the other treatment diet until a new carbon isotopic equilibrium could be established, characterizing T1 (C3-C4) and T2 (C4-C3) treatments. No significant differences were observed in fish productive performance. Good fits were obtained for the models that associated the delta(13)C change to time, resulting in carbon half-life values of 23.33 days for T1 and 25.96 days for T2. Based on values found for the muscle delta(13)C change rate from growth (0.0263 day(-1) and 0.0254 day(-1)) and turnover (0.0034 day(-1) and 0.0013 day(-1)), our results indicate that most of the delta(13)C change could be attributed to growth. The application of model that associated the delta(13)C change to body mass increase seems to produce results with no apparent biological explanation. The delta(13)C change rate could directly reflect the daily ration and growth rate, and consequently the isotopic change rates of carbon and other tissue elements can be properly used to assess different factors that may interfere in nutrient utilization and growth.  相似文献   

14.
Carbon isotope fractionation during aerobic mineralization of 1, 2-dichloroethane (1,2-DCA) by Xanthobacter autotrophicus GJ10 was investigated. A strong enrichment of (13)C in residual 1,2-DCA was observed, with a mean fractionation factor alpha +/- standard deviation of 0.968 +/- 0.0013 to 0.973 +/- 0.0015. In addition, a large carbon isotope fractionation between biomass and inorganic carbon occurred. A mechanistic model that links the fractionation factor alpha to the rate constants of the first catabolic enzyme was developed. Based on the model, it was concluded that the strong enrichment of (13)C in 1,2-DCA arises because the first irreversible step of the initial enzymatic transformation of 1,2-DCA consists of an S(N)2 nucleophilic substitution. S(N)2 reactions are accompanied by a large kinetic isotope effect. The substantial carbon isotope fractionation between biomass and inorganic carbon could be explained by the kinetic isotope effect associated with the initial 1,2-DCA transformation and by the metabolic pathway of 1,2-DCA degradation. Carbon isotope fractionation during 1,2-DCA mineralization leads to 1,2-DCA, inorganic carbon, and biomass with characteristic carbon isotope compositions, which may be used to trace the process in contaminated environments.  相似文献   

15.
Leaf carbon isotope discrimination (delta13C) was widely considered to directly reflect the rainfall environment in which the leaf developed, but recent observations have queried this. The relationship between delta13C and rainfall was explored in Eucalyptus species growing along a rainfall gradient in Australia. The leaves of 43 species of Eucalyptus and the closely related Corymbia species produced in 2003 were sampled in September 2004 at 50 sites and grouped into 15 locations along a rainfall gradient in southwest Western Australia. At 24 sites, the same species and same trees were sampled as in a study in September 2003 when leaves produced in 2002 were sampled. The rainfall in 2004 was on average 190 mm (range 135-270 mm) higher at all locations than in 2003. In the leaves sampled in 2004, the mean carbon isotope discrimination (delta13C) across the 15 locations decreased 2.9 per thousand per 1000 mm of rainfall, the specific leaf area (SLA) increased by 2.9 m2 kg(-1) per 1000 mm of rainfall and the nitrogen (N) content decreased by 1.56 g m(-2) per 1000 mm of rainfall. In contrast, a comparison between the leaves produced in the drier 2002 year compared with the wetter 2003 year showed that there was a strong correlation (r2= 0.85) between the SLA values between years and a trend for higher values with increasing SLA, but the values of delta(13)C were on average only 0.38 per thousand lower (more negative) at all locations in the wetter year, equivalent to a decrease of 2.0 per thousand per 1000 mm of rainfall. The results suggest that while there may be constitutive differences in leaf morphology, SLA and N content per unit area, increasing rainfall or cloudiness associated with higher rainfall increases SLA and decreases N content per unit area. We conclude that rainfall does not directly influence delta13C, but induces leaf morphological and physiological changes that affect the resultant delta13C.  相似文献   

16.
C A Roeske  M H O'Leary 《Biochemistry》1985,24(7):1603-1607
The carbon isotope effect at CO2 has been measured in the carboxylation of ribulose 1,5-bisphosphate by the ribulosebisphosphate carboxylase from Rhodospirillum rubrum. The isotope effect is obtained by comparing the isotopic composition of carbon 1 of the 3-phosphoglyceric acid formed in the reaction with that of the carbon dioxide source. A correction is made for carbon 1 of 3-phosphoglyceric acid which arises from carbon 3 of the starting ribulose bisphosphate. The isotope effect is k12/k13 = 1.0178 +/- 0.0008 at 25 degrees C, pH 7.8. This value is smaller than the corresponding value for the spinach enzyme. It appears that substrate addition with the R. rubrum enzyme is principally ordered, with ribulose bisphosphate binding first, whereas substrate addition is random with the spinach enzyme. The carboxylation step is partially rate limiting with both enzymes.  相似文献   

17.
Photosynthetic carbon isotope composition (delta(13)C) was measured on sugars in mature fruits from field-grown grapevines. Sugar delta(13)C and summer predawn leaf water potential were significantly correlated. The survey of different vineyards during four growing seasons showed that sugar delta(13)C in must at harvest varied from -20 per thousand to -26 per thousand when conditions during berry maturation varied from dry to wet. This range allows a very sensitive detection of grapevine water status under natural conditions. However, local differences due to soil capacity to supply water to grapevines are maintained, whatever the annual water balance. Leaf nitrogen content variations of field-grown grapevines did not change delta(13)C values. Genetic variability of delta(13)C between 31 grapevine varieties for delta(13)C was observed. Must sugar delta(13)C can be used to characterize vineyards for their soil structural capacity to provide water to grapevines. It was concluded that isotope carbon composition in grapevine measured on sugars at harvest can be applied to compare the capacities of vineyard soils and canopy management to induce mild water stress in order to produce premium wines.  相似文献   

18.
Stable hydrogen and carbon isotopic compositions of individual n-alkanes were determined for various terrestrial plants (33 samples including 27 species) and aquatic plants (six species) in natural environments from Japan and Thailand. In C3 plants, n-alkanes extracted from angiosperms have a deltaD value of -152+/-26 per thousand (relative to Standard Mean Ocean Water [SMOW]) and delta13C value of -36.1+/-2.7 per thousand (relative to Peedde Belemnite [PDB]), and those from gymnosperms have a deltaD value of -149+/-16 per thousand and delta13C value of -31.6+/-1.7 per thousand. Angiosperms have n-alkanes depleted in 13C relative to gymnosperms. n-Alkanes from C4 plants have a deltaD value of -171+/-12 per thousand and delta13C value of -20.5+/-2.1 per thousand, being a little depleted in D and much enriched in 13C compared to C3 plants. n-Alkanes of CAM plants are a little depleted in D and vary widely in delta13C relative to those of C3 and C4 plants. In aquatic plants, n-alkanes from freshwater plants have a deltaD value of -187+/-16 per thousand and delta13C value of -25.3+/-1.9 per thousand, and those from seaweeds have a deltaD value of -155+/-34 per thousand and delta13C value of -22.8+/-1.0 per thousand. All n-alkanes from various plant classes are more depleted in D and 13C relative to environmental water and bulk tissue, respectively. In addition, the hydrogen and carbon isotopic fractionations during n-alkane synthesis are distinctive for these various plant classes. While C3 plants have smaller isotopic fractionations in both D and 13C, seaweed has larger isotopic fractionations.  相似文献   

19.
The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences.  相似文献   

20.
The magnitude and impact of gaseous nitrogen dioxide (NO(2)) directly entering the leaves were investigated using foliar nitrogen isotopic composition (delta(15)N) values in tomato (Lycopersicon esculentum) and tobacco (Nicotiana tabacum). Using a hydroponics-fumigation system, (15)NO(2) (20 and 40 ppb) was supplied to shoot systems and (50 and 500 microM) was supplied to root systems. Morphological, stable isotope and nitrate reductase activity (NRA) analyses were used to quantify foliar NO(2) uptake and to examine whether realistic concentrations of NO(2) influenced plant metabolism. Nicotiana tabacum and L. esculentum incorporated 15 and 11%, respectively, of (15)NO(2)-N into total biomass via foliar uptake under low supply. On a mass basis, N. tabacum and L. esculentum incorporated 3.3 +/- 0.9 and 3.1 +/- 0.8 mg of (15)NO(2)-N into biomass, respectively, regardless of availability. There were no strong effects on biomass accumulation or allocation, leaf delta(13)C values, or leaf or root NRA in response to NO(2) exposure. Foliar NO(2 )uptake may contribute a significant proportion of N to plant metabolism under N-limited conditions, does not strongly influence growth at 40 ppb, and may be traced using foliar delta(15)N values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号