首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(1):105-115
In the present study for the purpose of removal of boron from water by adsorption using adsorbents like fly ash, natural zeolite, and demineralized lignite was investigated. Boron in water was removed with fly ash, zeolite, and demineralized lignite with different capacities. Ninety-four percent boron was removed using fly ash. Batch experiments were conducted to test the removal capacity, to obtain adsorption isotherms, thermodynamic and kinetic parameters. Boron removal by all adsorbents was affected by pH of solution; maximum adsorption was achieved at pH 10. Adsorption of boron on fly ash was investigated by the Langmuir, Freundlich, and the Dubinin-Radushkevich models. Standard entropy and enthalpy changes of adsorption of boron on fly ash were, ΔS 0  = ?0.69 kJ/mol K and ΔH 0  = ?215.34 kJ/mol, respectively. The negative value of ΔS 0 indicated decreased randomness at the solid/solution interface during the adsorption boron on the fly ash sample. Negative values of ΔH 0 showed the exothermic nature of the process. The negative values of ΔG 0 implied that the adsorption of boron on fly ash samples was spontaneous. Adsorption of boron on fly ash occurred with a pseudo-second order kinetic model, and intraparticle diffusion of boron species had also some effect in adsorption kinetics.  相似文献   

2.
The present work provides an electrochemical removal of boron from water and its kinetics, thermodynamics, isotherm using mild steel and stainless steel as anode and cathode respectively. The various operating parameters on the removal efficiency of boron were investigated, such as initial boron ion concentration, initial pH, current density and temperature. The results showed that the optimum removal efficiency of 93.2% was achieved at a current density of 0.2 A dm?2 at pH of 7.0. First‐, second‐order rate equations, Elovich and Intraparticle models were applied to study adsorption kinetics. Adsorption isotherms of boron on Fe(OH)3 were determined and correlated with isotherm equations such as Langmuir, Freundlich and D‐R models. Thermodynamic parameters, such as standard Gibb's free energy (Δ), standard enthalpy (Δ) and standard entropy (Δ), were also evaluated by Van't Hoff equation. The adsorption process follows second‐order kinetics. The adsorption of boron preferably fits with Langmuir adsorption isotherm suggesting monolayer coverage of adsorbed molecules. The adsorption of boron onto Fe(OH)3 was found to be spontaneous and endothermic. © 2011 Canadian Society for Chemical Engineering  相似文献   

3.
BACKGROUND: The removal of heavy metals using adsorption techniques with low cost biosorbents is being extensively investigated. The improved adsorption is essentially due to the pores present in the adsorbent. One way of improving the porosity of the material is by irradiation of the precursor using microwaves. In the present study, the adsorption characteristics of nickel onto microwave‐irradiated rice husks were studied and the process variables were optimized through response surface methodology (RSM). RESULT: The adsorption of nickel onto microwave‐irradiated rice husk (MIRH) was found to be better than that of the raw rice husk (RRH). The kinetics of the adsorption of Ni(II) from aqueous solution onto MIRH was found to follow a pseudo‐second‐order model. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were also evaluated. The thermodynamics of Ni(II) adsorption onto MIRH indicates that it is spontaneous and endothermic in nature. The response surface methodology (RSM) was employed to optimize the design parameters for the present process. CONCLUSION: Microwave‐irradiated rice husk was found to be a suitable adsorbent for the removal of nickel(II) ions from aqueous solutions. The adsorption capacity of the rice husk was found to be 1.17 mg g?1. The optimized parameters for the current process were found as follows: adsorbent loading 2.8 g (100 mL)?1; Initial adsorbate concentration 6 mg L?1; adsorption time 210 min.; and adsorption temperature 35 °C. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
In this study, a novel selective Au(III) chelating surface ion imprinted fibers based on phenyl thiosemicarbazide modified natural cotton (Au‐C‐PTS) has been synthesized, and applied for selective removal of Au(III) from aqueous solutions. Batch adsorption experiments were performed with various parameters, such as contact time, pH, initial Au(III) concentration, and temperature. The kinetic studies revealed that the adsorption process could be described by pseudo‐second‐order kinetic model, while the adsorption data correlated well with the Langmuir and Freundlich models. The maximum adsorption capacities calculated from the Langmuir equation are 140 ± 1 mg g?1 and 72 ± 1 mg g?1 at pH 5 for both Au‐C‐PTS and NI‐C‐PTS, respectively. The estimated thermodynamic parameters (Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy change (ΔS°)) indicated the spontaneity and exothermic nature of the adsorption process. Furthermore, the selectivity study revealed that the ion imprinted fibers was highly selective to Au(III) compared with Cu(II), Cd(II), Hg(II), and Fe(III). The adsorbent was successfully regenerated with a 0.1M HNO3 solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40769.  相似文献   

5.
The adsorption of bovine serum albumin (BSA) was carried out onto polyvinyl alcohol–coated glass powder surfaces. The adsorbed amount was about four times more than that on uncoated glass. The kinetics of the adsorption process was followed colorimetrically, and kinetic parameters, such as adsorption coefficient, rate constants for adsorption and desorption, diffusion constant, and penetration rate constant, were evaluated. The effects of experimental conditions, such as pH, presence of salts, addition of aliphatic alcohols, and variation in the dielectric constant of the medium, on the amount of adsorbed BSA were investigated. The effect of temperature on adsorption was also studied, and several thermodynamic parameters, such as standard free energy change (ΔG°), heat of reaction (ΔH°), and entropy change (ΔS°), were evaluated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 933–940, 2000  相似文献   

6.
Struvite powder obtained from swine wastewater was used as adsorbent to remove an azo leather dye from aqueous solution. The material was characterized by X-ray diffraction, surface area, and atomic force microscopy. The sample presented a single phase having a mesoporous structure and surface area of 35.63 m2 g?1. Langmuir and Freundlich isotherm models were fitted to the adsorption data and both satisfactorily represented the process. The maximum adsorption capacity was 38.14 mg g?1. From the analysis of thermodynamic parameters such as free energy of adsorption (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) it was verified that the adsorption process is very fast, spontaneous, and exothermic in nature, with weak forces acting.  相似文献   

7.
Carbon nanotubes (CNTs) were used as adsorbent to remove fulvic acids (FA) from aqueous solutions. The adsorption capacity of CNTs for FA can reach 24 mg g?1 at 5 °C and equilibrium concentration of 18 mg dm?3. The kinetic and thermodynamic parameters, such as rate of adsorption, standard free energy changes (ΔG0), standard enthalpy change (ΔH0) and standard entropy change (ΔS0), have been obtained. Acidic conditions (pH = 2–5) favor FA removal. An increase in the ionic strength or the addition of divalent cations increase the adsorption of FA dramatically (FA = 60 mg dm?3). An increase in the maximum adsorbed amount of FA was observed when treating FA in synthetic seawater. Desorption studies reveal that FA can be easily and quickly removed from CNTs by altering the pH values of the solution. Good adsorption capacity and quick desorption indicate that CNTs are a promising adsorbent to remove FA from aqueous solutions. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
9.
BACKGROUND: This research describes the adsorption of copper ions from aqueous solutions following the modification of rubber (Hevea brasiliensis) leaves with formaldehyde solution. The main objectives of this research were to identify the binding mechanisms of copper ions on the chemically modified rubber leaves by spectroscopic techniques and to investigate the effects of several important physicochemical parameters such as pH, copper concentration, contact time, adsorbent dose and temperature on copper removal. RESULTS: Based on a kinetic study, the pseudo‐second‐order model was found to fit the experimental results well, while the Boyd kinetic model indicated that the rate‐determining step was due to film diffusion. Adsorption isotherms were modelled by the Langmuir and Freundlich isotherm equations, with the former providing a better fit for the data. Based on the Langmuir model, the maximum adsorption capacities of Cu(II) ions at 300, 310 and 320 K were 8.36, 8.61 and 8.71 mg g?1, respectively. Thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy changes (ΔS°) were calculated. The adsorption process was spontaneous as the values of ΔG° were negative, and endothermic as higher adsorption capacities were recorded at higher temperatures. More than 80% of copper ions bound on the adsorbent were able to be desorbed using 0.02 mol L?1 HCl, HNO3 and EDTA solutions. Besides ion exchange, surface complexation could also play a major role in copper binding. CONCLUSION: Due to its relative abundance and satisfactory adsorption capacity, the modified rubber leaves can be considered as a good low‐cost adsorbent for removing copper ions from dilute aqueous solutions. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
An Algerian montmorillonite was modified with two organic surfactants, methyltriphenyl phosphonium bromide and n-hexyltriphenyl phosphonium bromide. The solids obtained were used as adsorbents to remove Orange II, an anionic dye from aqueous solutions. Batch experiments were conducted to study the effects of temperature (20–60°C), initial concentration of adsorbate (50–150 mg L?1) and pH of solution 6.5 on dye adsorption. Due to their organophilic nature, exchanged montmorillonites were able to adsorb Orange II at a very high level. Adsorption of Orange II for B-NHTPB and B-MTPB at different pH show that the adsorption capacity clearly decreases with an increase in pH of the initial solution from 2 to 8, this decrease being dramatic for pH > 8. This may be due to hydrophobic interactions of the organic dye with both phosphonium molecules and the remaining non-covered portion of siloxane surface. The kinetics of the adsorption was discussed on the basis of three kinetic models, i.e., the pseudo-first-order, the pseudo-second-order, and the intraparticle diffusion models. Equilibrium is reached after 30 min and 60 min for B-MTPB and B-NHTPB, respectively; the pseudo-second-order kinetic model described very well the adsorption of Orange II on modified bentonites. The non-linear Langmuir model provided the best correlation of experimental data, maximum adsorption of Orange II is 53.78 mg g?1 for B-NHTPB and 33.79 mg g?1 for B-MTPB. The thermodynamic parameters, such as free energy of adsorption (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were also determined and evaluated. From thermodynamic studies, it was deduced that the adsorption was spontaneous and exothermic.  相似文献   

11.
The present study deals with the sorptive removal of furfural from aqueous solution by carbon-rich bagasse fly ash (BFA). Batch studies were performed to evaluate the influence of various experimental parameters, namely, initial pH (p H 0), adsorbent dose, contact time, initial concentration, and temperature on the removal of furfural. Optimum conditions for furfural removal were found to be p H 0 ≈ 5.5, adsorbent dose ≈4 g/L of solution, and equilibrium time ≈4 h. The adsorption followed pseudo-second-order kinetics. The effective diffusion coefficient of furfural is of the order of 10?13 m2/s. Equilibrium adsorption data on BFA was analyzed by Freundlich, Langmuir, Dubnin-Radushkevich, Redlich-Peterson, and Temkin isotherm equations using regression and error analysis. The Redlich-Peterson isotherm was found to best represent the data for furfural adsorption onto BFA. Adsorption of furfural on BFA is favorably influenced by a decrease in the temperature of the operation. Values of the change in entropy (ΔS 0) and heat of adsorption (ΔH 0) for furfural adsorption on BFA were negative. The high negative value of change in Gibbs free energy (ΔG 0) indicates the feasible and spontaneous adsorption of furfural on BFA.  相似文献   

12.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

13.
《分离科学与技术》2012,47(8):1066-1075
Pure form, single phase, and highly crystalline low-silica zeolite Y was synthesized from natural nanotubular halloysite mineral by the hydrothermal method. In the synthesis process, the halloysite consisted of SiO2 and Al2O3 was used as starting material with adding supplementary silica and alumina sources. Ammonium adsorption properties of the as-synthesized zeolite Y were studied using batch experiments and the results revealed that its adsorption properties were strongly dependent on contact time, adsorbent dosage, pH, ionic strength, temperature, and initial concentration. The equilibrium data fit well with the Langmuir isotherm compared with the Freundlich isotherm. Kinetic studies showed that the adsorption followed the pseudo-second-order model. Thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0), and entropy (ΔS 0) were also determined, which indicated that the adsorption of ammonium on zeolite Y was a spontaneous and exothermic process at ambient conditions. Due to its low cost, high adsorption capacity and fast adsorption rate, the zeolite Y synthesized from halloysite has the potential to be utilized for the cost-effective removal of ammonium from wastewater.  相似文献   

14.
《分离科学与技术》2012,47(10):1456-1462
The biosorption behavior of lanthanum and cerium ions from aqueous solution by leaf powder of Pinus brutia was separately studied in a batch system as a function of initial pH, contact time, initial metal ion concentration, temperature, and adsorbent amount. The uptake of lanthanum and cerium was increased when the initial pH of the solution was increased. Thermodynamic parameters such as standard enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were calculated and the results indicated that biosorption was endothermic and spontaneous in nature. The biosorption of lanthanum and cerium on powdered leaf of Pinus brutia was investigated by the Freundlich, Langmuir, and D-R isotherms. The results show that lanthanum and cerium adsorption can be explained by the Langmuir isotherm model and monolayer capacity was found as 22.94 mg g?1 for lanthanum and 17.24 mg g?1 for cerium. Desorption of lanthanum and cerium was studied using 0.5 M HNO3 solution. The results suggested that powdered leaf of Pinus brutia may find promising applications for the recovery of lanthanum and cerium from aqueous effluents.  相似文献   

15.
Boron and its compounds are environmentally hazardous substance and are well-known condensed products that appear in coal fly ash during combustion of coal in coal-fired electric power stations. In a previous study, we suggested that boron in coal fly ash obtained from Nantun coal in China, identified as Ash-N, may exist on the surface of relatively large coal fly ash particles or as very fine particles generated by homogeneous nucleation. Although the characterization of boron in coal fly ash is important for its effective stabilization or removal, its detection is quite difficult because of its low concentration in coal fly ash and its light atomic weight. In the present work, solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR) technique has been applied to reveal the local chemical structures of boron in Ash-N. In the 11B MAS-NMR spectrum of Ash-N, two peaks which are attributed to a three-oxygen coordinated boron unit (BO3) and a four-oxygen coordinated boron unit (BO4) were observed with high resolution. We have estimated quadrupole parameters of the BO3 unit in Ash-N using computer simulation, and we have fingerprinted these moieties with the parameters of borates. The result of the present analysis shows that calcium- or magnesium-bearing orthoborate or pyroborate are the most likely forms of boron in Ash-N.  相似文献   

16.
The effective management and control of mosquitoes in human living environments are crucial to minimize vector‐borne diseases in homes. Pesticides, such as pyrethroids, are considered powerful tools in the control of mosquitoes and are intended to be incorporated into textiles. The adsorptive behavior of the pesticide ZX‐1 [the main component is 1,1,1‐trichloro‐2,2‐bis(p‐chlorophenyl) ethane] in aqueous solution on polyesters fibers at different treatment times, temperatures, and concentrations are discussed in this article. The second‐order model was found to be the most suitable for describing the kinetic diffusion process, and the intraparticle diffusion was the rate‐controlling process. The Langmuir, Freundlich, and Dubinin–Radushkevich adsorption models were applied to these approaches. The results show that the Langmuir model appeared to fit the adsorption of ZX‐1 on the polyester fibers better than other adsorption models. In addition, thermodynamic parameters, such as the free energy of adsorption (ΔG0), enthalpy (ΔH0), and entropy, were calculated. Positive values of ΔH0 and ΔG0 indicated the endothermic and nonspontaneous nature of ZX‐1 adsorption on the polyester fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
《分离科学与技术》2012,47(16):2555-2566
ABSTRACT

The present study is concerned usage of paper mill sludge (PMS) as an effective adsorbent to remove the two cationic character dyes (Basic Blue 3 [BB3] and Basic Yellow 28 [BY28]) from aqueous solutions. The surface morphology and some characteristics of PMS were determined by Fouirer Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Brunauer Emmett Teller (BET). The parameters affecting the process – temperature (10–55°C), adsorbent dose (0.5–10 g/l), initial pH (2–10 pH), initial concentration (50–250 mg/l) and contact time (0–24 h) – were examined in the batch adsorption experiments. Maximum adsorption capacities (qmax) of two dyes at 1 g/l dose and pH value of 7 were also calculated as 89.35 and 79.81, respectively. Adsorption phenomena of BB3 and BY28 cationic dyes onto PMS is controlled by pseudo-second-order model. Thereafter, equilibrium experimental data were applied to Langmuir, Freundlich and Dubinin–Redushkevich (D-R) isotherms, and Langmuir isotherm is the best represent the equilibrium adsorption process for both dyes. The processes occurred by physical adsorption because of calculated activation values (Ea) of BB3 and BY28 dyes were 19.43 and 9.35 kJ/mol, respectively. In addition, based on thermodynamic calculations such as free energy (Δ), enthalpy (Δ) and entropy (Δ), the results clearly demonstrated that the adsorption process were of exothermic and spontaneous nature for both dyes. At the light of obtained findings, it can be stated that PMS can be used effectively in removal of cationic dyes from textile wastewaters and is an alternative to commercial adsorbents due to its low-cost and abundance in the paper industries.  相似文献   

18.
《分离科学与技术》2012,47(5):1239-1259
Abstract

The present study aims to evaluate the influence of various experimental parameters viz. initial pH (pH 0), adsorbent dose, contact time, initial concentration and temperature on the adsorptive removal of furfural from aqueous solution by commercial grade activated carbon (ACC). Optimum conditions for furfural removal were found to be pH 0 ≈ 5.9, adsorbent dose ≈ 10 g/l of solution and equilibrium time ≈ 6.0 h. The adsorption followed pseudo‐second‐order kinetics. The effective diffusion coefficient of furfural was of the order of 10?13 m2/s. Furfural adsorption onto ACC was found to be best represented by the Redlich‐Peterson isotherm. A decrease in the temperature of the operation favorably influenced the adsorption of furfural onto ACC. The positive values of the change in entropy (ΔS 0); and the negatived value of heat of adsorption (ΔH 0) and change in Gibbs free energy (ΔG 0) indicated feasible, exothermic, and spontaneous nature of furfural adsorption onto ACC.  相似文献   

19.
This study examined the effectiveness of a new adsorbent prepared from banana (Musa paradisiaca) stalk, one of the abundantly available lignocellulosic agrowastes, in removing Pb(II) and Cd(II) ions from aqueous solutions. The adsorbent (PGBS‐COOH) having a carboxylate functional group at its chain end was synthesized by graft copolymerization of acrylamide on to banana stalk, followed by functionalization. Batch adsorption experiments were carried out as a function of solution pH, ionic strength, contact time, metal concentration, adsorbent dose and temperature. A pH range of 5.5–8.0 was found to be effective for the maximum removal for both Pb(II) and Cd(II). Metal uptake was found to decrease with increase in ionic strength due to the expansion of the diffuse double layer and, more importantly, the formation of some chloro complexes (since NaCl was used in the adjustment of ionic strength), which do not appear to be adsorbed to the same extent as cations [M2+ and M(OH)+]. The kinetic studies showed that an equilibrium time of 3 h was needed for the adsorption of Pb(II) and Cd(II) on PGBS‐COOH and adsorption processes followed a pseudo‐second‐order equation. The Langmuir isotherm model fitted the experimental equilibrium data well. The maximum sorption capacity for Pb(II) and Cd(II) ions was 185.34 and 65.88 mg g?1, respectively, at 30 °C. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were derived to predict the nature of adsorption. The isosteric heat of adsorption was found to be independent of surface coverage. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC‐50, for comparison. Synthetic wastewater samples were treated with the adsorbent to demonstrate its efficiency in removing Pb(II) and Cd(II) ions from industrial wastewaters. Acid regeneration was tried for several cycles with a view to recovering the sorbed metal ions and also restoring the sorbent to its original state. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
The adsorption of toluene was studied by using various types of adsorbents (Na+- and Al3+-bentonite) modified by dodecyltrimethylammonium bromide (DTAB). The characterization of these new sorbing matrices by XRD and IR indicates that DTAB tallow interacted with bentonite and increased the interlayer spacing of the clay with double-layered formation. Adsorption of toluene on modified bentonites was characterized by linear isotherms with no limitation of adsorption within the concentration range studied, thus indicating a mechanism of adsorption due to partition. Adsorption was fast and favored by a slightly acid medium. Pseudo-first-order, pseudo-second-order, the Elovich equation, and intra-particle diffusion models were used to fit the experimental data. The adsorption kinetic of toluene was described by the pseudo-first order onto DTAB-Na-bent, and pseudo-second order onto DTAB-Al-bent. The intra-particle diffusion process was identified as the main mechanism controlling the rate of toluene adsorption. Thermodynamic parameters such as standard free energy change (ΔG 0), the standard enthalpy change (ΔH 0), and the standard entropy (ΔS 0) were also evaluated. The variation of adsorption energy versus the types of adsorbent suggested a physical adsorption mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号