首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
光伏电池输出特性曲线方程是光伏发电理论研究的基础,首先建立光伏电池工程用数学模型,然后为了能够更有效地提高光伏发电系统的最大输出功率,在传统电导增量法的基础上提出了一种改进型的MPPT算法,经过验证此方法不仅能够有效提高跟踪速度和精度,而且可以较好的抑制系统在最大功率处的波动.并网的光伏发电系统,由公网系统提供电压支撑,所以可以采用P-Q控制方式的逆变器使其输出恒定的有功和无功功率.整个控制系统包括3个环节,分别是MPPT环、并网逆变器的电压外环和电流内环,MPPT环可与电压外环和电流内环相互独立,即升压电路与逆变电路分别由2个控制器独立完成.  相似文献   

2.
阐述了最大功率点跟踪方法(MPPT),并结合光伏电池的输出特性,提出了一种基于MPT的串联型Z源并网逆变器结构,并详细阐述了该方案的工作过程和软件的主要结构.最后根据该结构进行了数据仿真.  相似文献   

3.
基于改进MPPT算法的光伏并网控制策略研究   总被引:1,自引:0,他引:1  
研究了光伏并网发电系统的控制策略,并进行了一定改进.结合恒定电压跟踪法与增量电导法两种控制方法,提出了一种改进的最大功率点跟踪(MPPT)算法.当外界环境变化时,通过直接控制直流斩波器开关占空比,以达到快速准确的功率跟踪效果.系统通过双闭环并网控制,使并网逆变器在保持并网电流质量的同时更好地控制直流电压.在MATLAB/SIMULINK软件平台上搭建光伏并网发电系统的仿真模型,并验证了改进的MPPT算法及并网控制策略的有效性.  相似文献   

4.
在分析光伏并网发电系统的结构和常用控制方案的基础上,根据太阳能光伏(PV)电池的内部结构和输出特性,搭建了PV电池仿真模型;阐述了可跟踪光伏点及光伏电池发出的最大功率的光伏MPPT控制方法,此方法可以最大程度提高光伏电池的效率;最后详细分析了光伏并网控制原理及其控制策略。通过对并网逆变器采用瞬时值控制方法实现了低THD、高功率因数的并网要求。  相似文献   

5.
针对光伏电池非线性输出特性存在最大功率输出的问题,只有实现最大功率点的跟踪(MPPT)才能提高太阳能电池的效率.分析了最大功率点跟踪的常用方法,即恒定电压控制法、扰动观测法、导纳增量法、功率回授法以及模糊控制法等,并对几种常见的MPPT方法进行比较和分析,为实现光伏并网控制器中重要环节的设计与实现提供参考.  相似文献   

6.
对单相光伏并网的运行控制进行了仿真研究。给出了单相光伏并网的主电路拓扑结构,对光伏电池的特性进行了仿真研究。通过Boost升压斩波电路和改进的扰动观察法实现了光伏阵列输出的最大功率跟踪控制。在光伏并网过程中,并网逆变器采用电压电流双闭环的控制策略来实现系统并网。仿真结果表明,在不同的外界条件下,系统均能实现并网。  相似文献   

7.
为了实现光伏系统的最大功率输出和并网运行并改善其输出特性,提出了一种基于SVPWM调制的逆变器功率控制方法.该方法采用双闭环控制,以光伏阵列输出的最大功率作为逆变器功率外环的参考输入量,实现最大功率注入电网;逆变器控制内环为电流环,用于控制系统注入主电网的电流品质,同时实现对逆变电路的电流保护.实验结果表明,该控制方法的控制效果优良,具有功率跟踪精度高、电流畸变小的特点,能够提高光伏并网系统的功率转换效率.  相似文献   

8.
基于DSP控制的单相光伏并网逆变器设计   总被引:1,自引:0,他引:1  
基于TMS320LF2812芯片,设计一种单相光伏发电并网逆变系统,由Boost DC/DC电路和逆变桥组成.详细介绍光伏并网逆变器最大功率跟踪(MPPT)的实现方法、逆变器电网跟踪控制以及电网电压锁相控制,并给出软件设计流程.基于Matlab软件对该系统进行仿真验证,并研制了试验样机.实验结果表明:基于DSP控制的单...  相似文献   

9.
为了提高光伏器件利用效率,对最大功率点跟踪(MPPT)方法进行研究.针对扰动观察法在天气快速变化时,会产生误判这一问题,在功率差值 扰动观察法(dP-P&O)的基础上,引入光照变化加速度的概念,对光照变化过程进行更精确的建模,减少最大功率跟踪过程中的误判现象.同时,利用功率守恒原理,对光伏阵列输出和逆变器输出功率之间的关系进行分析,得出通过比较扰动前后并网电流的变化来实现MPPT控制的方法.该方法不需要对光伏阵列的输出电压和电流进行检测,降低了光伏系统的成本.仿真和实验结果表明,该方法是可行的,并且系统能够保持稳定性.  相似文献   

10.
为了充分的分析和理解光伏电池最大功率跟踪系统的动态特性,建立了光伏电池最大功率跟踪系统的数学模型,包括光伏电池模型、最大功率跟踪控制电路模型、PWM控制电路模型、Boost电路模型等。采用模糊逻辑控制与扰动观察法相结合的方法,提高了MPPT的速度和精度。最后开发了光伏电池MPPT系统的仿真软件,模拟了在天气变化情况下的光伏电池的功率输出特性。仿真结果表明,在天气变化情况下,光伏电池MPPT系统能够快速准确地收敛到新的最大功率点具有很好的稳态特性和动态特性。  相似文献   

11.
根据光伏电池的物理模型,以及光伏阵列在不同光照强度和环境温度下的输出特性,对基于boost电路的最大功率跟踪控制进行了理论分析及实现,讨论了三相光伏并网逆变器的工作原理,并在PSCAD/EMTDC中搭建了三相光伏并网系统.仿真结果表明,系统能够在温度和光照强度的阶跃变化下快速响应,并能够始终保持最大功率输出,验证了理论的有效性及可行性.  相似文献   

12.
传统上光伏并网发电大都采用工频或者高频变压器,但他们都有一些缺点。而非隔离型两级式光伏并网逆变器的应用可以尽可能地提高光伏并网系统的效率和降低成本,前级boost电路不仅能够提高最大功率跟踪(MPPT)的精度,而且又能使网侧逆变器较好的控制直流母线电压。后级逆变主要作用是实现对电网的跟踪控制确保逆变电路输出稳定、高质量的正弦变流电,因此采用电压外环、电流内环的双闭环控制。这种控制系统前级的最大功率点跟踪和后级的并网是互不干扰、相互独立的,不仅提高了系统控制可靠而且更有利于系统的模块化设计与集成。在Matlab/simulink建仿真模型,证明了该逆变系统的可行性并且达到了并网的要求。  相似文献   

13.
Z源逆变器光伏发电系统是一种具有升/降压功能的单级系统,可以通过调节直通占空比实现前级光伏电池的最大功率跟踪(MPPT)控制,然后由逆变器调制因子m实现并网控制.提出了一种直通占空比调制范围上限随动的两级控制策略.该策略兼顾了两级控制和单级控制的优点:充分利用了直通零矢量,使逆变器的调制因子m增大,直流电压利用率高,相应的有源器件的电压应力和逆变器输出电流谐波得到很大地改善;消除了光伏电池和电网之间的影响.仿真和实验结果验证了理论分析的正确性与实用性.  相似文献   

14.
根据光伏并网发电系统的特点,设计了一套基于数字信号处理器TMS320F28027控制的单相光伏并网逆变器,分析了系统的结构和控制原理,并对系统的逆变输出和DSP输出SPWM波形进行测试。实验结果表明,并网电流波形良好,逆变器输出的电流基本与电网电压同频同相,并网的功率因数近似为1。  相似文献   

15.
针对光伏并网发电系统中的核心技术——逆变器的结构设计与控制方法进行详细分析,采用软件锁相环(SPLL)实现了逆变器对电网电压频率和相位的实时跟踪;根据光伏微逆变器的特点,研究分析了结构简单具有隔离作用的有源钳位交错反激变换器。通过搭建Matlab/simulink模块对系统主电路进行理论验证,在实验室制作了100 W的实验样机对系统进行实际验证。实验结果表明系统满足设计要求,其控制方法和策略具有可行性。  相似文献   

16.
基于Matlab/Simulink仿真建立了两级式三相光伏并网系统,以研究最大功率点跟踪(MPPT)控制策略.前级DC/DC变换器采用扰动观察法实现MPPT,后级逆变电路采取电压外环、电流内环的双闭环PI控制,以稳定直流母线电压,实现网侧电流的跟踪控制.仿真结果表明,采用的MPPT控制策略具有良好的动态响应性能,且能较好地稳定直流母线电压.  相似文献   

17.
光伏发电系统的输出功率随着光照强度、环境温度和系统输出电压的不同而变化着,控制光伏阵列的工作点使其稳定的工作在当前的最大功率点处非常重要。首先对光伏电池进行机理建模.实验表明模型能够很好的反应实际的光伏电池工作特性。在介绍了几种传统的最大功率点跟踪(MPPT)控制算法的基础上,提出了一种新型的变步长电导增量法控制,其初始参考电压为当前光伏阵列开路电压的0.8倍,并且以计算得到的的步长进行继续跟踪。仿真结果表明,系统的跟踪速度增强并且有效的减小稳态震荡,具有良好的动态和稳态性能。  相似文献   

18.
本文系统地介绍了三相光伏并网发电系统的建模与仿真。根据光伏阵列的等效电路,在Matlab/simulink中采用S函数的方式,建立了光伏阵列的数学模型。基于光伏阵列的V-I曲线,利用牛顿迭代求解方法,确定了光伏阵列并网运行的最大功率点。根据三相光伏并网发电系统的结构图,结合双闭环并网的控制策略,实现了光伏阵列的最大功率点跟踪控制、光伏并网电流的正弦化和单位功率因数。最后,将光伏并网接入到电力系统的配电网络中,结合算例,研究了日照强度、环境温度、控制策略等变化时,光伏阵列的仿真结果。通过仿真分析,证明了本文所建立的三相光伏并网的模型和控制策略的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号