首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《广东化工》2021,48(8)
以Fe_3O_4为核合成了具备光催化活性和磁性的Fe3O4@mTiO_2核壳结构复合材料,并研究其光催化性能。在Fe3O4纳米颗粒表面包覆TiO_2壳层,改变钛酸四丁酯(TBOT)用量调控TiO_2壳层厚度,结果显示,当TBOT用量为0.35 g时可获得具有最佳壳层厚度的Fe3O4@Ti O2核-壳材料。随后,利用水热法将无定型TiO_2转变为锐钛矿型TiO_2,获得了具有高比表面积和光催化活性Fe3O4@Ti O2核壳材料,并以亚甲基蓝作为模型分子评估其光催化性能。  相似文献   

2.
《应用化工》2022,(5):916-919
以Fe Cl_3·6H_2O和Fe SO_4·7H_2O为原料,氢氧化钠溶液为沉淀剂,制备了磁性Fe_3O_4粒子。采用XRD、SEM方法表征,并研究了Fe_3O_4粒子对亚甲基蓝的降解作用。结果表明,Fe_3O_4粒子平均粒径为5μm,以Fe_3O_4-H_2O_2组成类Fenton反应体系降解10 mg/L的亚甲基蓝溶液,当溶液p H值为3,浓度3%的H_2O_2用量为4 m L和0.2 g Fe_3O_4粉末,9 h内亚甲基蓝的降解率可达98.69%。  相似文献   

3.
《应用化工》2016,(5):916-919
以Fe Cl_3·6H_2O和Fe SO_4·7H_2O为原料,氢氧化钠溶液为沉淀剂,制备了磁性Fe_3O_4粒子。采用XRD、SEM方法表征,并研究了Fe_3O_4粒子对亚甲基蓝的降解作用。结果表明,Fe_3O_4粒子平均粒径为5μm,以Fe_3O_4-H_2O_2组成类Fenton反应体系降解10 mg/L的亚甲基蓝溶液,当溶液p H值为3,浓度3%的H_2O_2用量为4 m L和0.2 g Fe_3O_4粉末,9 h内亚甲基蓝的降解率可达98.69%。  相似文献   

4.
光催化作为一种绿色环境治理技术,成为学界的重要研究方向之一。然而,绝大部分光催化反应需要依靠紫外光激发,发展前景受到极大限制。采用两步沉淀法制备了磁性可见光催化剂Fe_3O4@Ag_3PO_4/AgCl,通过X射线衍射(XRD)、透射电子显微镜(TEM)和紫外-可见吸收光谱(UV-Vis)对其进行结构和组成特性分析。与此同时,以亚甲基蓝(MB)为目标污染物,研究了 Fe_3O_4@Ag_3PO_4/AgCl光催化剂的可见光催化降解性能。XRD和TEM分析表明,Fe_3O_4@Ag_3PO_4/AgCl光催化剂是由,Ag_3PO_4包覆在磁性纳米Fe_3O_4粒子表面,并由AgCl表面修饰Fe_3O_4@Ag_3PO_4形成。UV-Vis分析表明,Fe_3O_4@Ag_3PO_4/AgCl是可见光催化剂,且Fe_3O_4的负载能提高Ag_3PO_4对可见光的利用率。Ag_3PO_4光催化剂的循环利用性能较差,而Fe_3O_4@Ag_3PO_4/AgCl的循环利用性能较好。此外,Fe_3O_4@Ag_3PO_4/AgCl光催化降解MB过程中,主要的活性物质是O_2·~-和h~+,其中h~+的影响更为显著。  相似文献   

5.
采用水热反应法制备了易于固液分离的泥质活性炭(SAC)负载磁性光催化剂铁酸镍(NiFe_2O_4),样品通过在可见光照射下降解亚甲基蓝评价其光催化降解能力。结果表明:以NiSO_4·6H_2O和FeCl_3·6H_2O为主要原料,加入10%(约0.234 4 g)的泥质活性炭,在180℃水热条件下反应8 h,制备的SAC-NiFe_2O_4光催化活性最强。光催化反应时在草酸存在条件下,14 h时亚甲基蓝的去除率达到97%。以此为依据,研究了泥质活性炭制备的SAC-NiFe_2O_4磁性光催化剂并在可见光辐射条件下降解亚甲基蓝。结果表明,SAC-NiFe_2O_4磁性光催化剂在催化反应14h平衡后的去除率达到98%以上。催化剂循环使用3次以上,其催化活性基本不变。可见以泥质活性炭制备SAC-NiFe_2O_4磁性光催化剂有望用于光催化降解有机污染物。  相似文献   

6.
采用水解法制备了Fe_3O_4/TiO_2光催化剂,以紫外光和太阳光为光源,以苯酚降解为模型反应,4-氨基吡啉显色法来测定溶液中残余苯酚的浓度,并通过IR、XRD和UV-vis等方法对催化剂进行表征。光催化降解苯酚的活性实验表明,当Fe_3O_4含量为20%,焙烧温度为400℃时,Fe_3O_4/TiO_2的催化剂具有较好的太阳光活性和磁回收性能。反应150min,苯酚的降解率达50%;催化表征说明铁离子进入了TiO_2晶格形成了Fe-O-Ti键,400℃焙烧的TiO_2和20%Fe_3O_4/TiO_2为中TiO_2为锐钛矿相,Fe_3O_4复合后,TiO_2粒径降低了近9 nm,同时增强了可见光吸收性能,促进了Fe_3O_4/TiO_2的苯酚降解活性。  相似文献   

7.
笔者采用了3种不同方式制备了磁性纳米Fe_3O_4颗粒,以光催化降解亚甲基蓝和罗丹明溶液为模型反应,对其光催化活性进行了探讨。试验制备出来的纳米Fe_3O_4颗粒具有良好的磁性能,且不同的方法制备出的纳米Fe_3O_4颗粒的光催化活性不同。用水解法制备出的纳米Fe_3O_4颗粒的光催化活性最差,无降解发生;用低温相转化法制备出的纳米Fe_3O_4颗粒的降解性能比较好,降解率达到70%~80%;共沉淀法制备出的纳米Fe_3O_4颗粒最好,粒径最小,其降解率高达96%。共沉淀法制备出的纳米Fe_3O_4颗粒具有磁性的特点,也易于分离回收,具有良好的应用前景。  相似文献   

8.
利用改性沸石负载Fe_3O_4活化H_2O_2非均相Fenton体系氧化降解有机污染物亚甲基蓝。考察了催化剂改性沸石负载Fe_3O_4投加量、溶液初始pH和H_2O_2初始浓度对亚甲基蓝降解效果的影响,进而讨论Fe_3O_4/改性沸石-H_2O_2非均相Fenton体系的催化机理。结果表明,当催化剂投加量为2.40 g/L,初始溶液pH为5.33,H_2O_2浓度为5.93 mmol/L时,反应30 min后,9.60 mol/L的亚甲基蓝去除率可达到98.52%。通过自由基捕获剂抗坏血酸和羟基自由基捕获剂甲醇,证明了Fe_3O_4/改性沸石-H_2O_2体系的氧化物种为羟基自由基和过氧自由基。  相似文献   

9.
利用改性沸石负载Fe_3O_4活化H_2O_2非均相Fenton体系氧化降解有机污染物亚甲基蓝。考察了催化剂改性沸石负载Fe_3O_4投加量、溶液初始pH和H_2O_2初始浓度对亚甲基蓝降解效果的影响,进而讨论Fe_3O_4/改性沸石-H_2O_2非均相Fenton体系的催化机理。结果表明,当催化剂投加量为2.40 g/L,初始溶液pH为5.33,H_2O_2浓度为5.93 mmol/L时,反应30 min后,9.60 mol/L的亚甲基蓝去除率可达到98.52%。通过自由基捕获剂抗坏血酸和羟基自由基捕获剂甲醇,证明了Fe_3O_4/改性沸石-H_2O_2体系的氧化物种为羟基自由基和过氧自由基。  相似文献   

10.
采用层层自组装法成功制备了兼具磁性和光催化活性的双功能Fe_3O_4@SiO_2/(TiO_2/PW_(12))_(10)复合微球,利用扫描电镜、红外光谱和X-射线能谱仪对所得微球进行了结构和形貌的表征。以甲基橙为模型污染物,研究了紫外光下Fe_3O_4@SiO_2/(TiO_2/PW_(12))_(10)的光催化性质,系统考察了甲基橙溶液的初始浓度、溶液pH和无机氧化剂碘酸钾对复合膜催化效率的影响。动力学研究表明,在不同浓度甲基橙溶液中,染料的光催化降解遵循表观一级反应动力学。磁性Fe_3O_4纳米粒子的使用实现了反应后催化剂方便、快速和高效地分离回收。  相似文献   

11.
采用共沉淀-焙烧法制备了不同α-Fe_2O_3/Zn Fe_2O_4摩尔比的α-Fe_2O_3/Zn Fe_2O_4异质结复合粉体,考察了组分比对其光催化降解10 mg/L亚甲基蓝溶液活性的影响.结果表明,与单相α-Fe2O3或Zn Fe2O4相比,复合材料的光催化活性显著提高,α-Fe_2O_3/Zn Fe_2O_4摩尔比1:1时光催化性能最佳,光学带隙为1.94 e V,对太阳光谱的利用率约为41%,210 min内对亚甲基蓝溶液的降解率达99.65%.  相似文献   

12.
《应用化工》2022,(1):68-72
以纤维素和氯化亚铁为主要原料,制备了一种新型的磁性纳米复合材料,用于吸附水溶液中的亚甲基蓝,探索了Fe_3O_4与纤维素的质量比、反应时间、吸附剂用量、亚甲基蓝初始浓度等对材料吸附性能的影响。结果表明,Fe_3O_4/纤维素复合材料吸附亚甲基蓝的最佳条件为:2 mL初始浓度10 mg/L的亚甲基蓝废水,Fe_3O_4/纤维素质量比为1∶8,吸附剂用量为8 mg,吸附反应时间为10 min。在此条件下,Fe_3O_4/纤维素复合材料对亚甲基蓝的去除率可达91%。Fe_3O_4/纤维素复合材料吸附亚甲基蓝的过程符合Langmuir模型。该新型复合材料的吸附性能和磁性能有力的结合,使其具有易分离、易回收且能够循环利用的特点。同时,该材料制作成本低、适宜大规模生产。  相似文献   

13.
采用粉末活性炭(PAC)-Fe_3O_4磁性材料与H_2O_2组成类Fenton体系降解亚甲基蓝模拟废水,并使用X射线衍射仪、扫描电镜表征磁性材料。结果表明,PAC表面负载的铁氧化物为具有磁性的Fe_3O_4,Fe_3O_4近似球形均匀的负载在PAC表面。该类Fenton体系在PAC-Fe_3O_4磁性材料50 mg、H_2O_2投加量为30μL、p H为3、温度为40℃、反应180 min的条件下降解100 m L质量浓度为200 mg/L亚甲基蓝效果最好,亚甲基蓝和COD去除率分别为100%和94.42%。PAC-Fe_3O_4磁性材料-H_2O_2类Fenton体系对亚甲基蓝有良好的降解效果。  相似文献   

14.
以纤维素和氯化亚铁为主要原料,制备了一种新型的磁性纳米复合材料,用于吸附水溶液中的亚甲基蓝,探索了Fe_3O_4与纤维素的质量比、反应时间、吸附剂用量、亚甲基蓝初始浓度等对材料吸附性能的影响。结果表明,Fe_3O_4/纤维素复合材料吸附亚甲基蓝的最佳条件为:2 mL初始浓度10 mg/L的亚甲基蓝废水,Fe_3O_4/纤维素质量比为1∶8,吸附剂用量为8 mg,吸附反应时间为10 min。在此条件下,Fe_3O_4/纤维素复合材料对亚甲基蓝的去除率可达91%。Fe_3O_4/纤维素复合材料吸附亚甲基蓝的过程符合Langmuir模型。该新型复合材料的吸附性能和磁性能有力的结合,使其具有易分离、易回收且能够循环利用的特点。同时,该材料制作成本低、适宜大规模生产。  相似文献   

15.
以离子液体([C_4MIM]BF_4)为辅助剂、铁酸钴为磁核,用水热法制备了可磁分离TiO_2/CoFe_2O_4新型复合光催化材料。利用X射线衍射、N_2吸附-脱附和透射电子显微镜对样品进行表征;以亚甲基蓝溶液为模拟污染物,在模拟太阳光下考察样品光催化性能。结果表明:加入离子液体制备的TiO_2/CoFe_2O_4样品具有介孔结构,TiO_2稳定的包覆在CoFe_2O_4上,其比表面积可达238.3 m~2/g;在模拟太阳光下照射2 h,对亚甲基蓝的降解率可达97.9%。样品经磁场回收后重复使用3次光降解率为96.1%,依然保持较高的光催化活性。  相似文献   

16.
以静电纺聚四氟乙烯(PTFE)超细纤维为载体,采用浸渍-烧结法制备出PTFE超细纤维负载二氧化钦(TiO_2)催化膜。研究了该催化膜在紫外光下,不同反应条件对亚甲基蓝的光催化降解性能影响,探讨了负载型TiO_2光催化剂的循环回收利用率。结果表明:通过浸渍-烧结法可以成功制备出PTFE超细纤维负载TiO_2光催化膜,经450℃煅烧后TiO_2为锐钛矿晶型;在波长为365 nm,功率为300 W的紫光灯照射55 min,浸渍负载5h制备的TiO_2/PTFE超细纤维催化膜对初始浓度为5 mg/L,体积100 ML的亚甲基蓝溶液催化降解除率可达99%;在经过5次循环后,催化剂对亚甲基蓝的降解率仍达46%,回收利用率较高。  相似文献   

17.
以六水合氯化铁和氟化钠为原料、柠檬酸钠为络合剂,采用水热法制备氟掺杂的前驱体,在空气中于650℃热处理得到α-Fe_2O_3。通过XRD、SEM、EDS和FT-IR对样品结构、形貌与组成进行表征,考察其在可见光下对亚甲基蓝(MB)的光催化降解性能。结果表明,氟的掺杂使材料的粒径减小,分散度提高;同时,材料的带隙能缩小,光吸收能力增强。最优样品Fe_2O_3-3对亚甲基蓝的光催化降解率为97.78%,经过4次重复使用后,对亚甲基蓝的降解率为94.58%,仍具有较好的降解性能。  相似文献   

18.
以亚甲基蓝为降解物,在模拟可见光照射下比较Ag_3PO_4和TiO_2的光催化性能,探究Ag_3PO_4在不同pH、波长、催化剂用量和亚甲基蓝浓度下的光催化活性,并利用TOC分析降解的矿化效果。利用X射线衍射仪(XRD)、激光拉曼光谱仪(RRS)、傅里叶变换红外光谱仪(FT-IR)分析磷酸银样品的晶相组成。结果表明,在同等条件下Ag_3PO_4光催化活性远高于TiO_2。而Ag_3PO_4在中碱性环境、光照波长不大于535 nm、催化剂用量较大、亚甲基蓝溶液浓度不大于50mg/L这些条件下能有效降解亚甲基蓝。  相似文献   

19.
以硫酸亚铁、三氯化铁、正硅酸乙酯和四氯化钛为原料,通过沉淀、St?ber和溶胶-凝胶法,制备得到一种磁性纳米复合光敏剂TiO_2/Fe_3O_4-SiO_2,通过XRD、TEM、UV-vis和磁性测试对其进行了表征,利用四甲基偶氮唑蓝比色法(MTT法)考察了该纳米复合光敏剂对A549人肺癌细胞的体外杀伤效应和不同TiO_2负载量的TiO_2/Fe_3O_4-SiO_2对A549人肺癌细胞增殖抑制率的影响。结果表明,TiO_2/Fe_3O_4-SiO_2具有核壳结构和磁性,具有可见光吸收能力,能充分响应波长在400 nm以上的可见光。体外杀伤效应评价结果表明,当光照时间为150 min时,TiO_2负载量为质量分数30%的纳米复合光敏剂和单纯的TiO_2对A549人肺癌细胞增殖的抑制率分别为51%和36%,该纳米复合光敏剂具有增强的光动力活性。。  相似文献   

20.
催化湿式过氧化氢氧化是常见的一种降解水中有机物的方法,催化剂的加入能促使H_2O_2分解产生氧化能力更强且无选择性的羟基自由基,开发出性能优异的催化剂是该方法的关键所在。采用溶剂热法制备出磁性核壳型的Fe_3O_4@Ce O_2纳米催化剂,并采用N_2吸附-脱附、磁性测试和透射电子显微镜(TEM)对制备的Fe_3O_4@Ce O_2催化剂进行表征。考查Fe_3O_4及Fe_3O_4@Ce O_2分解H_2O_2的性能,结果表明,相比Fe_3O_4,Ce O_2包覆后的Fe_3O_4@Ce O_2分解的H_2O_2效率得到了提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号