首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料.采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制.结果表明:偶联剂成功接枝到氧化石墨烯表面;玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%.  相似文献   

2.
采用聚酰胺-胺(PAMAM)树状分子化学修饰方法制备碳纳米管接枝炭纤维(CF-PAMAM-CNTs)新型增强体。利用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对接枝前后CF表面官能团和表面形貌进行表征;利用接触角测量、单丝拉伸方法研究了接枝前后纤维单丝的润湿性能及拉伸强度,并通过微脱黏法分析了其复合材料的界面剪切强度,同时探索了CNTs的最佳接枝量。结果表明,当CNTs接枝量为15%时,CF表面粗糙度提高了180%,表面能提高了300%,拉伸强度提高了22%,复合材料的界面剪切强度提高了178%,这表明CNTs接枝有利于改善CF复合材料的界面性能。  相似文献   

3.
采用湿法制备预浸料成型炭纤维/石墨烯/环氧树脂复合材料,研究石墨烯片层的含氧量对炭纤维/石墨烯/环氧树脂复合材料力学性能与电磁性能的影响。结果表明,部分还原石墨烯可以同时提高复合材料的力学性能与电磁屏蔽性能,并且能保持复合材料的热性能。采用直接沉积和间接沉积对石墨烯进行界面沉积,以深入地研究还原石墨烯在复合材料界面处的增强机理。单丝断裂测试结果表明,直接沉积石墨烯使得界面剪切性能降低26.3%,而间接沉积石墨烯提升21.1%界面剪切性能,且石墨烯主要通过增韧机理进行界面增强。本研究制备的炭纤维/石墨烯/环氧树脂复合材料具有优异的综合性能和广阔的应用前景。  相似文献   

4.
采用氯化钙(CaCl_2)乙醇溶液和多巴胺水溶液浸渍法对芳纶纤维表面进行改性处理,对改性后芳纶纤维表面的化学结构、微观形貌、表面粗糙度、单丝拉伸强度和芳纶纤维/环氧树脂复合材料的界面性能等进行了测试分析。结果表明,采用CaCl_2乙醇溶液处理芳纶纤维后,芳纶纤维表面有刻蚀出的沟槽,表面粗糙度增大,芳纶纤维/环氧树脂复合材料的层间剪切强度明显提高,同时由于纤维结构受到破坏,单丝拉伸强度下降了11.12%;采用多巴胺水溶液处理时,芳纶纤维表面沉积了聚多巴胺涂层,表面粗糙度增大,芳纶纤维/环氧树脂复合材料的层间剪切强度进一步提高,纤维结构几乎不受影响,单丝拉伸强度降幅较小;采用CaCl_2乙醇溶液和多巴胺水溶液先后处理芳纶纤维后,纤维表面的聚多巴胺涂层更致密,复合材料的层间剪切强度达到最大值,同时改性后的纤维具有一定的抗紫外性能,此方法改性效果最优。  相似文献   

5.
采用氯化钙(CaCl2)乙醇溶液和多巴胺水溶液浸渍法对芳纶纤维表面进行改性处理,对改性后芳纶纤维表面的化学结构、微观形貌、表面粗糙度、单丝拉伸强度和芳纶纤维/环氧树脂复合材料的界面性能等进行了测试分析.结果表明,采用CaCl2乙醇溶液处理芳纶纤维后,芳纶纤维表面有刻蚀出的沟槽,表面粗糙度增大,芳纶纤维/环氧树脂复合材料的层间剪切强度明显提高,同时由于纤维结构受到破坏,单丝拉伸强度下降了11.12%;采用多巴胺水溶液处理时,芳纶纤维表面沉积了聚多巴胺涂层,表面粗糙度增大,芳纶纤维/环氧树脂复合材料的层间剪切强度进一步提高,纤维结构几乎不受影响,单丝拉伸强度降幅较小;采用CaCl2乙醇溶液和多巴胺水溶液先后处理芳纶纤维后,纤维表面的聚多巴胺涂层更致密,复合材料的层间剪切强度达到最大值,同时改性后的纤维具有一定的抗紫外性能,此方法改性效果最优.  相似文献   

6.
采用4,4′-二氨基二苯甲烷(DDM)处理氧化石墨烯(GO),将处理后的氧化石墨烯(GO-DDM)与环氧树脂(EP)充分混合制备了改性氧化石墨烯/环氧树脂复合材料(GO-DDM/EP)。通过红外光谱(FT-IR)、X射线衍射(XRD)和透射电子显微镜(TEM)等分析方法对GO-DDM进行表征,采用电子万能试验机和悬臂梁冲击试验机对制得的复合材料进行力学性能测试。结果表明:DDM成功地接枝在GO的表面,极大提高了GO在有机溶剂中的分散性,且GO不再分散在水中。当复合材料中的GO-DDM含量为0.9%时,其拉伸强度提升了64.9%,冲击强度提升了17.0%。  相似文献   

7.
将连续炭纤维束用自制的空气梳分散成单丝状长带后, 通过采用循环伏安法的电化学方法将单体苯酚在炭纤维表面聚合成膜, 对炭纤维进行表面修饰, 以提高复合材料中炭纤维与树脂基体的界面粘结性能。红外光谱分析表明, 苯酚电聚合膜能够增加炭纤维表面的羟基、 醚键等活性官能团, 从而提高炭纤维与环氧树脂基体的界面粘结强度。与未进行表面修饰的炭纤维增强环氧树脂复合材料相比, 以聚苯酚膜修饰的炭纤维单丝带增强的环氧树脂基复合材料横向拉伸强度最大提高了90%, 纵向拉伸强度最大提高了45%, 层间剪切强度最大提高了110%。实验也表明, 将炭纤维束分散成炭纤维单丝带后能够更有效地增强复合材料的各项力学性能。   相似文献   

8.
分别以氧化石墨粉(GO)、还原氧化石墨烯乙醇悬浮液(RGO)和热法还原石墨烯粉(TRG)为填料,分散于酚醛树脂(PR)的乙醇溶液中,再将这些基体混合物涂覆于炭纤维(CF)布上,经热压成型工艺制备氧化石墨烯/酚醛树脂/炭纤维、还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维、热法还原氧化石墨烯/酚醛树脂/炭纤维层次复合材料。研究了GO、RGO和TRG对复合材料结构、压缩性能、弯曲性能及磨擦性能的影响。结果表明,与纯酚醛树脂/炭纤维复合材料相比,当纳米填料的质量分数仅为0.1%时,层次复合材料的压缩性能可显著提高,其中,热法还原氧化石墨烯/酚醛树脂/炭纤维的压缩强度和模量分别提高了178.9%,129.5%;弯曲性能也可得到一定的改善。还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维层次复合材料的最大储能模量可提高75.2%。所有改性石墨烯/酚醛树脂/炭纤维层次复合材料的Tg均有所降低。  相似文献   

9.
采用基于WND(Wagner-Nairn-Detassis)能量模型的单丝断裂法,测试了5种国产炭纤维、2种国外炭纤维与航空结构用环氧树脂复合体系的界面断裂能,通过SEM,AFM,IR以及XPS等手段分析了7种炭纤维的表面物理化学特性,并研究了炭纤维特性与界面断裂能的关联。结果表明:对于所研究的炭纤维/环氧树脂体系,去除炭纤维表面上浆剂后界面断裂能下降,说明上浆剂可以在一定程度上提高界面的韧性。此外,实验范围内,纤维拉伸强度较高时,测得的界面断裂能较高,炭纤维表面粗糙度较高时,测得界面断裂能较高,说明纤维拉伸性能和表面粗糙度对界面韧性有重要影响,而与这两种因素相比,上浆剂的种类影响相对较小。研究结果为高性能国产炭纤维的研发和炭纤维/树脂匹配性的评价提供了重要的实验数据。  相似文献   

10.
利用氧化石墨烯(GO)表面的羟基分别与硅烷偶联剂KH550、KH560反应,制备功能化氧化石墨烯(KH550-GO、KH560-GO),分析了GO功能化前后的微观结构变化;通过溶液插层法将GO加入到聚氨酯-环氧树脂(PU-EP)基体树脂中制备GO/PU-EP复合材料,并对其拉伸性能及热性能进行测试。研究结果表明,KH550、KH560成功对GO进行了功能化,并且与PU-EP复合材料相比,GO/PU-EP复合材料的拉伸性能和热性能均有明显的提高。其中,KH550-GO的加入对基体树脂力学性能和热性能的改善尤为明显。添加0.1wt%的KH550-GO,基体树脂拉伸强度和拉伸模量分别提高了39.0%和94.4%,同时初始热分解温度提高了12℃。  相似文献   

11.
为提高芳纶纤维与复合材料基体间的界面强度,首先,使用LiCl乙醇溶液处理芳纶纤维一定时间;然后,对LiCl处理芳纶纤维表面的化学组成、微观形貌、单丝拉伸强度及芳纶纤维/环氧树脂复合材料的界面性能等进行了测试分析。结果表明:使用LiCl乙醇溶液处理芳纶纤维后,芳纶纤维表面的含氮官能团含量增加;处理后,芳纶纤维表面有刻蚀出的沟槽,表面粗糙度增大,进而改善了芳纶纤维与环氧树脂基体的界面粘接性能,使芳纶纤维/环氧树脂复合材料的层间剪切强度由处理前的21.75 MPa提升到37.98 MPa;最佳处理时间为3~4 h,而处理时间过长会导致芳纶纤维的单丝拉伸强度及复合材料的层间剪切强度下降。所得结论证实使用LiCl处理芳纶纤维是一种有效的表面改性方法。   相似文献   

12.
为了提高碳纤维/环氧树脂复合材料界面粘结性能,利用化学接枝法对碳纤维表面进行改性,通过加入引发剂和分步反应等方法,改善了传统化学接枝法反应温度高、时间长的缺点。利用XPS、Raman、SEM、电子万能材料试验机研究了改性前后碳纤维的结构及其复合材料性能的变化。结果表明,碳纤维经过氧化、接枝反应,表面活性官能团的含量和粗糙度增加,复合材料的层间剪切强度增加。在相同条件下,接枝乙二胺、乙二醇的碳纤维/环氧树脂复合材料的层间剪切强度分别提高了52.5%和47.9%,相比而言,乙二胺是较为理想的接枝单体。  相似文献   

13.
利用硅烷偶联剂(APTES)对氧化石墨烯(GO)进行功能化改性, 在不同的试验条件下制备了3种硅烷偶联剂功能化GO(APTES-g-GO)纳米填料, 并经熔融共混制备了APTES-g-GO填充改性的聚苯乙烯(PS)复合材料。为了改善复合材料的界面作用, 采用马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)为增容剂。分别采用FTIR、XRD、TG、SEM以及拉伸和冲击测试对填料和纳米APTES-g-GO/POE-g-MAH/PS复合材料的结构和性能进行了表征和测试。结果表明:APTES已成功接枝于GO的表面上。接枝过程中, APTES对GO有一定的剥离和还原作用。随着填料含量的增加, 纳米APTES-g-GO/POE-g-MAH/PS复合材料拉伸强度和冲击强度均先上升后下降。当填料与基体质量比为0.75%时, 3种复合材料的拉伸强度和冲击强度都达到最大值, 其中纳米AS-GO/POE-g-MAH/PS复合材料的综合性能最好, 其拉伸强度和冲击强度比POE-g-MAH/PS分别提高了19%和 31%。共混过程中, APTES-g-GO与POE-g-MAH之间的反应改善了纳米APTES-g-GO/POE-g-MAH/PS复合材料的界面相互作用。APTES-g-GO均匀分散于复合材料中, 它的加入提高了复合材料的热稳定性能。添加AS-GO填料的复合材料热稳定性能提高最为明显, 含0.75% AS-GO的纳米AS-GO/POE-g-MAH/PS复合材料的最大失重温度比POE-g-MAH/PS提高了7 ℃。   相似文献   

14.
为改进酚醛固化环氧树脂复合材料的性能,合成了邻甲苯酚醛树脂(o-CFR)、邻甲酚醛环氧树脂(o-CFER)和氧化石墨烯(GO),制备了o-CFR/o-CFER/GO玻璃钢复合材料,研究了不同含量的氧化石墨烯对复合材料物理力学性能的影响。结果表明,GO加入可以改善材料的力学性能、耐热性能和电绝缘性能。当酚醛与环氧质量比为4∶6,材料中加入1.2%的GO时,起始分解温度(Tid)提高了91℃,复合材料的拉伸强度和冲击强度分别提高了102%和86%;加入2.0%时材料玻璃化转变温度(Tg)可提高19℃。  相似文献   

15.
采取不同浓度的磷酸水溶液对芳纶纤维进行表面处理, 并对不同处理条件下芳纶纤维的单丝强度、表面性质及其环氧树脂复合材料的界面性能进行了分析和测试。结果表明: 20 wt %磷酸溶液处理的芳纶纤维, 纤维表面含氧官能团含量最高; 继续提高磷酸溶液的浓度, 含氧官能团含量下降, 纤维表面趋于平整, 单丝强度上升。用20 wt %磷酸溶液处理芳纶纤维, 纤维/ 环氧树脂基复合材料的层间剪切强度达到62 MPa , 界面剪切强度提高18 % , 是一种简单有效的表面处理方法。纤维表面粗糙度和纤维表面含氧官能团的数量是影响芳纶纤维/ 环氧树脂复合材料界面结合性能的关键因素。   相似文献   

16.
采用扫描电镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等测试方法表征了两种国产上浆/去浆T800级炭纤维的表面特性,并通过单丝断裂实验测试了单丝复合体系微观界面剪切强度(IFSS),在此基础上研究了炭纤维表面特性对单丝复合体系微观界面性能及其耐湿热性能的影响。结果表明:去浆后炭纤维表面含氧活性官能团含量降低,粗糙度增加,与基体树脂的界面结合强度增大;湿热环境对复合材料的微观界面性能影响显著,尤其是破坏了纤维/基体间的化学键合作用,但去湿后部分界面性能可恢复。  相似文献   

17.
氧化石墨烯(GO)和纳米氧化锌(ZnO)具有优异的性能,但在环氧树脂中容易出现团聚现象,为解决这一问题,必须对其进行表面改性。以七水合硫酸锌为原料,将ZnO负载到GO表面,通过FT-IR,XRD,SEM,EDS,TG和接触角测试,纳米ZnO均匀分散在GO基体上,并可以在不改变GO片层结构的条件下,改善GO的团聚问题的同时降低GO的亲水性。然后将ZnO负载GO与环氧树脂制备纳米ZnO负载GO/环氧复合材料。结果表明:纳米ZnO负载GO/环氧复合材料力学性能和热稳定性明显提高,当ZnO/GO加入量为0.250%(质量分数)时复合材料综合性能最佳,拉伸强度、拉伸模量、断裂伸长率和冲击强度分别比纯环氧树脂提高了99.87%,12.09%,98.35%和151.48%,吸水率比纯环氧树脂降低了81.48%。  相似文献   

18.
采用阳极氧化法对炭纤维的表面进行处理,通过改变氧化程度制备具有不同表面化学结构的炭纤维,并将其作为增强体再制备成复合材料。研究了炭纤维表面化学结构对其增强环氧树脂基复合材料性能的影响。结果表明,阳极氧化处理后炭纤维表面活性大幅提高,O,N元素含量分别由处理前的3.10%,1.12%提高到处理后的13.07%,5.96%;当电流密度低于15A/m2时,O/C,N/C值越高越有利于炭纤维表面与环氧树脂基体之间的界面黏合;在含氧官能团中,-COOH是决定炭纤维/环氧树脂基体间化学键合强度高低的关键因素。  相似文献   

19.
为提高玄武岩纤维(BF)增强环氧树脂(EP)复合材料的力学性能,通过接枝硅烷偶联剂KH550来提升BF与EP之间的界面强度。采用衰减全反射红外光谱、X射线光电子能谱仪、原子力显微镜、扫描电子显微镜、界面剪切强度测试和拉伸测试研究BF表面KH550的接枝率对复合材料界面粗糙度、界面强度及拉伸强度的影响。结果表明,KH550的成功接枝可以增加BF的表面粗糙度及复合材料的界面强度;随着KH550接枝率的增加,BF表面形貌呈现“光滑-粗糙-光滑-粗糙”的变化过程,复合材料的界面强度及力学性能也呈现先增大后减小的趋势。当KH550接枝率达到5%~6%时,KH550-BF表面均匀光滑,复合材料的界面强度和拉伸强度达到最大,分别为48 MPa和298 MPa。当接枝率超过6%,过量的KH550在BF表面的不均匀分布形成结构缺陷和应力集中,进而导致复合材料界面强度和力学性能的降低。  相似文献   

20.
氧化石墨烯(GO)是石墨烯重要的衍生物之一,通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌,研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加,GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低,其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2℃提高到424.5℃,而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大,冲击强度由纯环氧树脂的10.5kJ/m2提高到19.7kJ/m2,弯曲强度由80.5 MPa提高到104.0 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号