首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A general model of the multiple-winding coupled inductor is described, in which all parameters can be directly measured. The magnetics and the resulting cross-regulation models are employed in a tutorial explanation of the mechanisms by which leakage inductances and effective turns ratios affect cross regulation and discontinuous conduction mode boundaries in a multiple-output converter with arbitrary number of outputs. Analytical results are found for the discontinuous mode boundaries and for the steady-state characteristics when one of the outputs operates in discontinuous conduction mode. Three basic approaches to coupled-inductor design are compared: near-ideal coupling, practical moderate coupling, and the zero-ripple approach. It is shown that the best cross regulation can be obtained via the zero-ripple approach with relatively loose coupling in applications where there is at least one output whose load current variations are relatively small so that all windings can always operate in continuous conduction mode. The conclusions are supported by experimental results  相似文献   

2.
The power stage of the PWM DC–DC converter is modelled and analysed using the sampled-data approach. The work addresses both continuous and discontinuous conduction mode under voltage mode control, and continuous conduction mode under current mode control. For each configuration, nonlinear and linearized sampled-data models, and control-to-output transfer functions are derived. Using this approach, both current mode control and discontinuous conduction mode can be handled systematically in a unified framework, making the modelling for these cases simpler than with the use of averaging. The results of this paper are similar to results of Tymerski, but they are presented in a simpler manner tailored to facilitate immediate application to specific circuits. It is shown how sampling the output at certain instants improves the obtained phase response. Frequency responses obtained from the sampled-data model are more accurate than those obtained from various averaged models. In addition, a new (‘lifted’) continuous-time switching frequency-dependent model of the power stage is derived from the sampled-data model. Detailed examples illustrate the modelling tools presented here and also provide a means for comparing results obtained from the sampled-data approach with those obtained from averaging.  相似文献   

3.
连续导电模式下的单电感多输出DC/DC变换器   总被引:1,自引:1,他引:0  
系统分析了单电感多输出DC/DC变换器结构,及其采用分时复用原理实现多路输出。由于电感共享,各输出支路间存在着严重的交叉影响。当输出支路严格工作在不连续导电模式(DCM)或伪连续导电模式(PCCM)下,可有效抑制交叉影响。文中采用一种新的控制方式,利用各支路输出电压的共模电压、差模电压分别控制输入半桥、输出半桥占空比,在连续导电模式(CCM)模式下实现了几乎没有交叉影响的多路输出。  相似文献   

4.
This paper presents a novel average current mode control (ACC) strategy for the control of pulse width modulated (PWM) DC-DC converters, which represents a drastic improvement over conventional ACC. This new method consists of the addition of an auxiliary controller into the control loop, besides the current and voltage regulators. The model-based auxiliary controller can increase the closed loop small-signal bandwidth of Buck derived converters, preserving loop gain crossover frequency and stability margins over significant changes of the power stage passive elements values, the load and the line voltage. Moreover, this control scheme shows much better disturbance rejection properties, i.e., closed loop impedance and audiosusceptibility, than conventional ACC. From a control theory point of view, robust performance is achieved preserving stability. A Buck prototype has been experimentally tested with different LC output filters, line and load conditions, including discontinuous conduction mode. Measurements of the small signal frequency response of the converter have been carried out, showing the improvement achieved by the proposed control scheme. The empirical large signal response of the converter under load steps is also shown in order to validate the concept  相似文献   

5.
A new, continuous-time model for current-mode control [powerconvertors]   总被引:1,自引:0,他引:1  
A current-mode control power convertor model that is accurate at frequencies from DC to half the switching frequency is described for constant-frequency operation. Using a simple pole-zero transfer function, the model is able to predict subharmonic oscillation without the need for discrete-time z-transform models. The accuracy of sampled-data modeling is incorporated into the model by a second-order representation of the sampled-data transfer function which is valid up to half the switching frequency. Predictions of current loop gain; control-to-output; output impedance; and audio susceptibility transfer functions were confirmed with measurements on a buck converter. The audio susceptibility of the buck converter can be nulled with the appropriate value of external ramp. The modeling concentrates on constant-frequency pulse-width modulation (PWM) converters, but the methods can be applied to variable-frequency control and discontinuous conduction mode  相似文献   

6.
A pseudo-CCM/DCM SIMO switching converter with freewheel switching   总被引:4,自引:0,他引:4  
This paper presents a single-inductor multiple-output (SIMO) converter operating in pseudo-continuous conduction mode (PCCM) and/or discontinuous conduction mode (DCM). With the proposed freewheel switching control, this converter can handle large load currents with a much smaller current ripple, while retaining low cross regulation. It can also work in DCM for high efficiency at light loads. A prototype of a single-inductor dual-output (SIDO) boost converter was fabricated with a standard 0.5-/spl mu/m CMOS n-well process. The two outputs are regulated at 2.5 and 3.0 V, respectively. At an oscillator frequency of 1 MHz, the efficiency reaches 89.4% at a total output power of 320 mW. Compared with prior designs, both current and voltage ripples are reduced. This design can be extended to have multiple outputs and for different types of dc-dc conversions, or be applied to single-output converters for fast transient response.  相似文献   

7.
This paper presents the steady-state behavior of a two-channel resonant converter family in symmetrical operation. Six configurations will be investigated, including step-down, step-up/down, and step-up ones in continuous conduction mode (CCM) and in discontinuous conduction mode (DCM). Exploring the conditions of transition from CCM to DCM or back, it becomes evident that the CCM operation is definitely restricted, that is, sometimes the converter cannot he operated in CCM at all. The most important relations among the input, output, and control variables are derived and verified by simulation and experimental results.  相似文献   

8.
This paper presents a novel average current-mode control (ACC) strategy for the control of multimodule parallel pulsewidth modulation DC-DC converters, which represents a drastic improvement over conventional ACC. This new method consists of the addition of an auxiliary controller into the control loop, besides the current and voltage regulators. The reference-model-based auxiliary controller improves the robustness of the ACC dynamics in buck-derived distributed power systems, preserving loop gain crossover frequency and stability margins over significant changes of the number of connected modules, the load and the line voltage. Moreover, this control scheme shows much better disturbance rejection properties, i.e., closed-loop output impedance and audiosusceptibility, than conventional ACC. From a control theory point of view robust performance is achieved, preserving stability. A multimodule buck prototype has been experimentally tested with different numbers of modules on stream, line, and load conditions, including discontinuous conduction mode. Measurements of the small-signal frequency response of the converter have been carried out, showing the improvement achieved by the proposed control scheme. The empirical large-signal response of the converter under load steps is also shown in order to validate the concept  相似文献   

9.
A unified SPICE compatible average model of PWM converters   总被引:1,自引:0,他引:1  
A simple, unified, and topology-independent model of basic pulse-width modulated (PWM) power converters is developed using the switched inductor approach presented by S. Ben-Yaakov (1989). The model is compatible with SPICE or other similar general-purpose electronic circuit simulators. It can be used to simulate DC, small signal, and transient behavior of PWM converters operating in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). During simulation, the model automatically follows the CCM and DCM operation, with fewer convergence problems compared to previous simulation models. An effective measurement technique using the HP3562A dynamic signal analyzer (DSA) is presented and applied to compare simulation runs with experimental data. The two were found to be in good agreement  相似文献   

10.
Active clamp topologies of low power dissipation have become a very attractive solution in order to limit overvoltages in flyback converters. Although many suitable topologies have been introduced for the case of discontinuous conduction mode (DCM), where the duty cycle value depends on the load level, in continuous conduction mode (CCM) it is more difficult to appropriately design such topologies so as to "sense" load changes-due to the small duty cycle divergence under wide load variation. Taking for granted that in order to achieve high power-factor correction in these converters, CCM is a more attractive mode of operation, a drastic solution for this case that will manage to eliminate voltage stresses under wide load changes has become very essential. For this purpose, this paper presents an active clamp topology with small power dissipation, suitable for flyback converters operating in CCM mode. Its main idea is the use of a load-dependent current source, consisting of an auxiliary converter operating in DCM mode. Experimental results highlight the effectiveness of the proposed topology under wide load changes, establishing it as an appropriate solution in order to develop flyback converters, even at the power range of 500 W.  相似文献   

11.
王强  郭国先  王天施  刘晓琴 《电子学报》2000,48(9):1860-1863
为改善逆变器的运行效率,提出了一种节能型三相谐振直流环节软开关逆变电路,在直流环节增设了辅助电路.当主开关需要切换时,提前使辅助电路进入谐振状态,将直流环节电压变化到零,保证主开关完成零电压软切换,并且辅助开关也能完成软切换.通过控制辅助开关切换的间隔时间来调节直流环节电压保持为零的时间,使逆变器能根据需要来调整脉宽调制策略.详细说明了电路的工作过程.实验结果表明逆变器主开关和辅助开关能完成软切换.因此,该拓扑结构对于研发高性能谐振直流环节逆变器具有借鉴意义.  相似文献   

12.
景妍妍  王创  蔡晓敏  韩燕 《电子测试》2021,(7):55-57,70
感应式无线电能传输系统在超出一定负载范围时,将进入断续工作模式,基于基波近似法得到与负载无关的输出增益特性将不再满足,本文针对S-CLC型复合补偿拓扑,采用谐波分析法建立系统数学模型,给出整流侧电压/电流的谐波表达式,揭示波形发生畸变断续的主要原因。针对该补偿拓扑带载能力弱,提出了一种通过增加反向输入阻抗的高次谐波比例来提高输出增益的负载敏感度。搭建样机进行实验,结果验证了理论分析的正确性。  相似文献   

13.
Pulse regulation, a fixed frequency control technique, is introduced and applied to flyback converter operating in discontinuous conduction mode (DCM). The control parameters are designed in a way that the converter operates as close as possible to the critical conduction mode. In contrast to the conventional pulsewidth modulation control scheme, the principal idea of pulse regulation is to achieve output voltage regulation using high and low-power pulses. Pulse regulation is simple, cost effective, and enjoys a fast dynamic response. The proposed technique is applicable to any converter operating in DCM. However, this work mainly focuses on flyback topology. In this paper, the main mathematical concept of the new control algorithm is introduced and simulations as well as experimental results are presented.  相似文献   

14.
This paper addresses a comparative study of the spectral characteristics of four random-switching schemes that apply to the basic pulsewidth-modulation (PWM) DC/DC converters operating in discontinuous conduction mode (DCM). They include randomized pulse position modulation, randomized pulsewidth modulation, and randomized carrier frequency modulation with fixed duty cycle and with fixed duty time, respectively. Mathematical models that characterize the input current and output voltage of the three basic PWM converters operating in DCM are derived. In particular, the effectiveness of spreading the dominant switching harmonics in the input current that normally exist in the standard PWM scheme and the introduction of low-frequency harmonics in the output voltage with respect to the randomness level are investigated. The validity of the models and analyses are confirmed experimentally by using a DC/DC buck converter  相似文献   

15.
This paper presents a duty cycle generator for an average model of buck converter with current-mode control, which can simultaneously deal with both the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM). First, a duty cycle generator is mathematically derived, considering the transient-state of the current-loop. This technique plays an important role when the operating modes are changed under a considerable amount of step load change. Second, taking advantage of the analog behavioral modeling of PSpice, duty cycle generators for both the time and frequency domain analyses are built into a PSpice file. The accuracy of these models is verified through the computer simulations, which is compared to the actual circuit for the time domain analysis and the small signal model for the frequency analysis  相似文献   

16.
针对现有"电力电子技术"教材中普遍存在的对Buck-Boost变换器的分析不完整等问题,本文基于伏秒平衡原理对Buck-Boost变换器进行了全面分析,推导出变换器全范围的输入输出电压关系,电流连续模式(CCM)和断续模式(DCM)的临界工作条件以及电路各参数对电流纹波和电压纹波的影响等。本文一方面有助于更全面深入地理解Buck-Boost变换器的工作原理及特性,另一方面有助于DC-DC变换器分析方法的统一,具有一定的教学指导意义。  相似文献   

17.
In this paper, an exact solution of a circuit model for a three-phase rectifier with constant-voltage load and ac-side reactance that operates in the continuous conduction mode is presented. Obtained results are compared to the results provided applying sinusoidal approximation, published previously. It is shown that the sinusoidal approximation provides acceptable results at low output voltages, with the accuracy being decreased for the output voltages approaching to the discontinuous conduction mode boundary. Computational complexity of the exact solution is about the same as for the solution obtained applying sinusoidal approximation.   相似文献   

18.
Whereas power-factor-correction (PFC) converters for low-power ranges (less than 250 W) are commonly designed for operation in the discontinuous conduction mode, converters for higher power levels are operated in the continuous conduction mode. Nevertheless, when these converters are operated at reduced power, discontinuous conduction mode will appear during parts of the line period, yielding input current distortion. This distortion can be eliminated by employing a dedicated control algorithm, consisting of sample correction and duty-ratio feedforward. The reduction of the harmonic distortion of the input current and the increase of the power factor are demonstrated by experiments on a 1-kW boost PFC converter.  相似文献   

19.
A major consideration in designing controllers for boost converters is the existence of a right-half-plane zero in the control-to-output transfer function. This property makes the controller impossible to be designed in classical frequency-domain approach to achieve fast dynamic response over wide bandwidth of supply and load variations. In this paper, a time-domain boundary control concept for large-signal control of boost converters is proposed. By transforming the conventionally used state plane into the newly proposed state-energy plane to dictate the switching instants, a well-defined switching surface is derived. The converter can ideally revert to the steady state in two switching actions when it is subject to external disturbances. Of particular importance, experiments show that the same controller is applicable for controlling converters operating in continuous conduction mode, critical conduction mode, or discontinuous conduction mode. Sensitivities of the switching surface to parametric variations will be studied. Theoretical predictions will be verified with the experimental results of a 55 W, 48 V/110 V prototype.  相似文献   

20.
A performance comparison of boundary control with the first-(sigma1) and second-order(sigma2) switching surfaces for buck converters operating in discontinuous conduction mode (DCM) is presented in this paper. Performance attributes under investigation include the average output voltage, output ripple voltage, switching frequency, parametric sensitivities to the component values, and large signal characteristics. Due to the presence of the output hysteresis band, an additional switching boundary formed by the zero-inductor-current trajectory is created. This phenomenon causes a shift of the operating point in converters with sigma1. Conversely, the operating point remains unchanged in converters with sigma2. As well as in continuous conduction mode (CCM), sigma2 can make the converter revert to the steady-state in two switching actions in DCM and gives better static and dynamic responses than in both CCM and DCM. Most importantly, its control law and settings are applicable for both modes. Experimental results of a prototype are found to be in good agreement with theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号