首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we examined the effect of extracellular adenosine 5'-triphosphate (ATP) on Ca2+ efflux from freshly isolated adult rat cardiomyocytes. ATP at 1 mM caused a release of 3.6+/-0.08% of the total cellular content. The 45Ca2+ efflux from the cells was also stimulated by adenosine-5'-O-(3-thiotriphosphate) (ATP-gamma s), alpha, beta-methylene-ATP and adenosine 5'-diphosphate (ADP), but not by adenosine 5'-monophosphate (AMP) or adenosine. The effect of ATP was inhibited by a known purinergic P2-receptor antagonist, but not by a P1-receptor antagonist. From these results, it is conceivable that the effect of ATP on Ca2+ efflux from cardiomyocytes is mediated through P2-purinoceptors. It was also observed that ATP caused a rise in [Ca2+]i to almost 200 nM. The ATP-stimulated 45Ca2+ efflux was not affected by removal of extracellular Ca2+, but was dependent on the presence of extracellular Na+. Moreover, ATP caused a 22Na+ influx into the cells of about 2.0-fold over the basal value. These result suggest that ATP stimulates extracellular Na+-dependent 45Ca2+ efflux from freshly isolated adult rat cardiomyocytes, probably through its stimulatory effect on plasma membrane P2-purinoceptors which may couple to Na+/Ca2+ exchange.  相似文献   

2.
Adenosine has receptor-mediated effects in a variety of cell types and is predominantly formed from ATP by a series of nucleotidase reactions. Adenosine formed intracellularly can be released by bidirectional nucleoside transport processes to activate cell surface receptors. We examined whether stimulation of adenosine receptors has a regulatory effect on transporter-mediated nucleoside release. DDT1 MF-2 smooth muscle cells, which possess nitrobenzylthioinosine-sensitive (ES) transporters as well as both adenosine A1 and A2 receptors, were loaded with the metabolically stable nucleoside analogue [3H]formycin B. N6-cyclohexyladenosine (CHA), a selective adenosine A1 receptor agonist, produced a concentration-dependent inhibition of [3H]formycin B release with an IC50 value of 2.7 microM. Further investigation revealed CHA interacts directly with nucleoside transporters with a Ki value of 3.3 microM. Neither 5'-N-ethylcarboxamidoadenosine (NECA), a mixed adenosine A1 and A2 receptor agonist, nor CGS 21680, a selective adenosine A2A receptor agonist, affected nucleoside release. We conclude that release of the nucleoside formycin B from DDT1 MF-2 cells is not regulated by adenosine A1 or A2 receptor activation.  相似文献   

3.
We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 mM KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

4.
P2 receptor subtypes and their signaling mechanisms were characterized in dispersed smooth muscle cells. UTP and ATP stimulated inositol 1,4,5-triphosphate formation, Ca2+ release, and contraction that were abolished by U-73122 and guanosine 5'-O-(3-thio)diphosphate, and partly inhibited (50-60%) by pertussis toxin (PTX). ATP analogs (adenosine 5'-(alpha, beta-methylene)triphosphate, adenosine 5'-(beta, gamma-methylene)triphosphate, and 2-methylthio-ATP) stimulated Ca2+ influx and contraction that were abolished by nifedipine and in Ca2+-free medium. Micromolar concentrations of ATP stimulated both Ca2+ influx and Ca2+ release. ATP and UTP activated Gq/11 and Gi3 in gastric and aortic smooth muscle and heart membranes, Gq/11 and Gi1 and/or Gi2 in liver membranes, and Go and Gi1-3 in brain membranes. Phosphoinositide hydrolysis stimulated by ATP and UTP was mediated concurrently by Galphaq/11-dependent activation of phospholipase (PL) C-beta1 and Gbetagammai3-dependent activation of PLC-beta3. Phosphoinositide hydrolysis was partially inhibited by PTX or by antibodies to Galphaq/11, Gbeta, PLC-beta1, or PLC-beta3, and completely inhibited by the following combinations (PLC-beta1 and PLC-beta3 antibodies; Galphaq/11 and Gbeta antibodies; PLC-beta1 and Gbeta antibodies; PTX with either PLC-beta1 or Galphaq/11 antibody). The pattern of responses implied that P2Y2 receptors in visceral, and probably vascular, smooth muscle are coupled to PLC-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. These receptors co-exist with ligand-gated P2X1 receptors activated by ATP analogs and high levels of ATP.  相似文献   

5.
1. The effects of exogenous ATP or adenosine on end-plate currents (e.p.cs; evoked by simultaneous action of a few hundred quanta of ACh) or on miniature e.p.cs (m.e.p.cs) were studied under voltage clamp conditions on frog sartorius muscle fibres. 2. ATP or adenosine (100 microM(-1) mM) reduced the e.p.c. amplitude but did not affect m.e.p.c. amplitude, decay time constant and voltage-dependence of m.e.p.c., suggesting that e.p.c. depression induced by these purines had presynaptic origin only. 3. The action of ATP, unlike that of adenosine, was prevented by the P2-purinoceptor antagonist suramin (100 microM). The stable ATP analogue alpha,beta-methylene ATP (100 microM), known to be desensitizing agent on P2X receptors, also abolished the depressant effect of ATP while sparing the action of adenosine. Concanavalin A, an inhibitor of ecto-5'-nucleotidase, did not affect the presynaptic action of exogenously applied ATP. 4. The presynaptic action of adenosine was prevented by theophylline (1 mM), a blocker of adenosine receptors, while the effect of ATP was not changed under these conditions. The selective blocker of A1 adenosine receptors, 8-cyclopentyl-1,3,dipropylxanthine (DPCPX; 0.1 microM), abolished the presynaptic action of adenosine but did not prevent the depressant effect of ATP. 5. The effects of ATP and adenosine (at nearly saturating concentration) were additive suggesting that these purines activated not only distinct receptors but also different intracellular signalling mechanisms. 6. In contrast to the hypothesis that at the neuromuscular junction ATP reduces transmitter release via enzymatic degradation to presynaptically active adenosine, our data suggest that ATP (through its own presynaptic receptors) directly inhibits ACh release. Thus, ATP and adenosine might be almost equipotent as endogenous prejunctional neuromodulators at the neuromuscular junction.  相似文献   

6.
7.
We studied the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultures enriched (96.4+/-0.4%) in rat cholinergic amacrine-like neurons, as determined by labeling with an antibody against choline acetyltransferase. A small population of these cells also contained GABA. Using these cultures we observed that both [3H]ACh release, which was largely Ca2+-dependent, and 45Ca2+ influx, evoked by depolarization with 50 mM KCl, were increased when adenosine A1 receptor activation was prevented by removal of endogenous adenosine with adenosine deaminase, or by application of the A1 receptor antagonist DPCPX. Our results indicate that, in cultured rat amacrine-like neurons, the activation of A1 receptors decreases calcium influx and, thereby, inhibits [3H]ACh release.  相似文献   

8.
Bicomponent (fractions S and F) staphylococcal leukocidal toxins (Panton-Valentine leukocidin-Luk and haemolysin gamma-Hlg) were tested for in vitro activity against isolated polymorphonuclear leukocytes (PMNL) and peritoneal macrophages (PMF). For assessment of membrane permeability at subcytolytic concentrations of leukocidin (Luk-S + Luk-F) and haemolysin gamma (HlgA + HlgB) (8-1000 ng/ml), PMNL and PMF were radiolabelled (86Rb, 14C-amino-isobutyric acid (AIB) or 51Cr). All toxins tested caused lysis of human PMNL, although considerable differences were noted in the sensitivity of these cells to Luk and Hlg. Release of 51Cr (at 1000-5000 ng/ml), being a sign of irreversible cell damage and lysis, was preceded, at lower concentrations of the toxins (40 and 200 ng/ml), by the release of large amounts of low-molecular labels--86Rb and 14C-AIB. In another experiment, it was found that release of 86Rb from PMNL incubated with low concentrations of Luk (50 ng/ml) took place after 15-30 minutes of incubation, when no significant amounts of 14C-AIB or 51Cr were released. These findings support the concept of pore formation by staphylococcal leukocidal toxins in membranes of sensitive cells and indicate that a relatively short time is needed for the formation of these pores after binding of the Luk-S and Luk-F components to the membrane.  相似文献   

9.
ATP analogs substituted in the gamma-phosphorus (ATPgammaS, beta, gamma-imido-ATP, and beta,gamma-methylene-ATP) were used to probe the involvement of P2 receptors in the modulation of synaptic transmission in the hippocampus, because their extracellular catabolism was virtually not detected in CA1 slices. ATP and gamma-substituted analogs were equipotent to inhibit synaptic transmission in CA1 pyramid synapses (IC50 of 17-22 microM). The inhibitory effect of ATP and gamma-phosphorus-substituted ATP analogs (30 microM) was not modified by the P2 receptor antagonist suramin (100 microM), was inhibited by 42-49% by the ecto-5'-nucleotidase inhibitor and alpha,beta-methylene ADP (100 microM), was inhibited by 74-85% by 2 U/ml adenosine deaminase (which converts adenosine into its inactive metabolite-inosine), and was nearly prevented by the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (10 nM). Stronger support for the involvement of extracellular adenosine formation as a main requirement for the inhibitory effect of ATP and gamma-substituted ATP analogs was the observation that an inhibitor of adenosine uptake, dipyridamole (20 microM), potentiated by 92-124% the inhibitory effect of ATP and gamma-substituted ATP analogs (10 microM), a potentiation similar to that obtained for 10 microM adenosine (113%). Thus, the present results indicate that inhibition by extracellular ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases and channeling of the generated adenosine to adenosine A1 receptors.  相似文献   

10.
11.
BACKGROUND: To elucidate the molecular mechanism underlying sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediated signaling, we compared their effects with those of adenosine triphosphate (ATP) and angiotensin II (Ang II) on the cytosolic free Ca2+ concentration ([Ca2+]i), inositol 1,4, 5-trisphosphate (IP3) generation and arachidonic acid release in rat glomerular mesangial cells. METHODS: The fluorescent Ca2+ indicator, Fura-2, was used to measure the [Ca2+]i changes in cultured rat glomerular mesangial cells either in suspension or attached to the coverslips. RESULTS: SPC 5 microM, S1P 5 microM, ATP 100 microM and Ang II 90 nM all induced increases in the [Ca2+]i, and the effect showed marked homologous desensitization, while heterologous desensitization was less. After the initial exposure of the cells to SPC, the increase in [Ca2+]i induced by subsequent addition of ATP or Ang II was only reduced by about 14.3% and 4.8%, respectively. After the initial exposure to S1P, a greater reduction was seen (42. 1% and 47.7%, respectively). Both arachidonic acid release and IP3 generation were activated by all four agonists with an identical rank order of effectiveness of SPC > S1P > ATP = Ang II; both were pertussis toxin-sensitive and cholera toxin-resistant. The arachidonic acid release induced by all four agonists showed identical susceptibility to removal of extracellular Ca2+, whereas IP3 generation displayed differential extracellular Ca2+ dependence. Only SPC-induced IP3 generation was highly sensitive to extracellular Ca2+ level, and this Ca2+ dependence was abolished after pretreatment of cells with arachidonyl trifluoromethyl ketone (AACOCF3), a phospholipase A2 inhibitor. Furthermore, the Mn2+ influx was markedly greater in SPC-stimulated cells than in either control or other agonist-stimulated cells, and was decreased by prior exposure of cells to AACOCF3. After phospholipase A2 was inhibited or in the absence of extracellular Ca2+, SPC displayed identical effectiveness as S1P on desensitizing the action of ATP or Ang II on the increase in [Ca2+]i. Conclusions. Our results indicate that all four agents primarily activate phospholipase C through their receptor occupancies, but that SPC alone also induces further significant Mn2+ influx and IP3 generation attributable to its primary stimulatory effect on arachidonic acid release. Thus, the heterologous desensitization to ATP or Ang II induced by SPC was less profound than that induced by S1P, since SPC induced a Ca2+ influx.  相似文献   

12.
We have previously demonstrated in vitro actin movement at nanomolar adenosine triphosphate (ATP) levels using heavy meromyosin from skeletal muscle. In the present work we tested whether the motility at nonomolar ATP-concentrations could be supported by cardiac myosin as well. Actomyosin (skeletal actin and bovine ventricular myosin) was pretreated in the in vitro motility assay with 1 mM ATP; subsequently, the ATP level was reduced by multiple rigor-solution washes. By the final rigor-solution wash, the ATP concentration, monitored by the luciferin-luciferase assay, dropped to the order of 100 nM. Even at this low ATP level actin-filament movement remained in evidence. This was in marked contrast to the situation where ATP concentration was gradually increased from zero; in the latter, filament movement began only as ATP levels exceeded 1-2 microM. The difference indicates that potential energy is stored during the initial ATP treatment, and utilized later as the free ATP falls below micromolar levels. Although the velocity of cardiac myosin-supported movement was only one fourth of that of skeletal myosin, both myosins supported actin movement down to similar ATP concentrations. The similarity in response of the two myosins to ATP implies a similar degree of potential energy storage. Given the significantly different specific ATPase activities, however, it appears that the mechanism of potential energy storage and release involves factors different from those involved in the release of chemical energy by the myosin ATPase.  相似文献   

13.
14.
1. We have studied the effects of purinoceptor stimulation on Ca2+ signals in bovine adrenomedullary endothelial cells. [Ca2+]i was determined with the fluorescent probe fura-2 both in population samples and in single, isolated, endothelial cells in primary culture and after subculturing. 2. In endothelial cells, maintained in culture for more than one passage, several purinoceptor agonists elicited clear [Ca2+]i transient peaks that remained in the absence of extracellular Ca2+. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) were equipotently active, with EC50 values of 8.5 +/- 0.9 microM and 6.9 +/- 1.5 microM, respectively, whereas 2-methylthioadenosine 5'-triphosphate (2MeSATP), adenosine 5'-(alpha, beta-methylene)triphosphate (alpha, beta-MeATP) and adenosine(5')tetraphospho(5')adenosine (Ap4A) were basically inactive. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) was a weak agonist. The apparent potency order was UTP = ATP > ADP beta S > 2MeSATP > alpha, beta-MeATP. 3. Cross-desensitization experiments revealed that UTP or ATP, added sequentially at concentrations of maximal effect, could completely abolish the [Ca2+]i response to the second agonist. ADP beta S exerted only a partial desensitization of the response to maximal ATP, in accordance with its lower potency in raising [Ca2+]i. 4. The effect on [Ca2+]i of 100 microM ATP in subcultured cells was reduced by only 25% with 100 microM suramin pretreatment and was negligibly affected by exposure to 10 microM pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS). The concentration-effect curve for ATP was not significantly affected by PPADS, but was displaced to the right by a factor of 6.5 by 100 microM suramin. 5. In primary cultures, clear [Ca2+]i responses were elicited by 2MeSATP. Suramin totally and selectively blocked 2MeSATP responses, whereas UTP-evoked [Ca2+]i transients were mainly unaffected by suramin or PPADS. Over 80% of cells tested showed responses to both 2MeSATP and UTP. The [Ca2+]i response to UTP was not desensitized in the presence of 2MeSATP. 6. ATP and UTP stimulated the release of preloaded [3H]-arachidonic acid ([3H]-AA), both in the presence and in the absence of extracellular Ca2+, by approximately 135% with respect to basal levels. Suramin and PPADS enhanced, rather than inhibited, the [3H]-AA releasing effect of ATP by 2.5 times. Suramin also potentiated the effect of the calcium ionophore A23187. 7. These results indicate that endothelial cells from adrenomedullary capillaries co-express both P2Y- and P2U-purinoceptors. P2Y-purinoceptors are lost in culture with the first passage of the cells. The P2U-purinoceptor subtype present in these cells is insensitive to PPADS and thus similar to that found in aortic endothelial cells.  相似文献   

15.
Clodronate, alendronate, and other bisphosphonates are widely used in the treatment of bone diseases characterized by excessive osteoclastic bone resorption. The exact mechanisms of action of bisphosphonates have not been identified but may involve a toxic effect on mature osteoclasts due to the induction of apoptosis. Clodronate encapsulated in liposomes is also toxic to macrophages in vivo and may therefore be of use in the treatment of inflammatory diseases. It is generally believed that bisphosphonates are not metabolized. However, we have found that mammalian cells in vitro (murine J774 macrophage-like cells and human MG63 osteosarcoma cells) can metabolize clodronate (dichloromethylenebisphosphonate) to a nonhydrolyzable adenosine triphosphate (ATP) analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, which could be detected in cell extracts by using fast protein liquid chromatography. J774 cells could also metabolize liposome-encapsulated clodronate to the same ATP analog. Liposome-encapsulated adenosine 5'-(beta, gamma-dichloromethylene) triphosphate was more potent than liposome-encapsulated clodronate at reducing the viability of cultures of J774 cells and caused both necrotic and apoptotic cell death. Neither alendronate nor liposome-encapsulated alendronate were metabolized. These results demonstrate that the toxic effect of clodronate on J774 macrophages, and probably on osteoclasts, is due to the metabolism of clodronate to a nonhydrolyzable ATP analog. Alendronate appears to act by a different mechanism.  相似文献   

16.
The recent demonstration that myocardial Ca(2+)-independent phospholipase A2 exists as a complex of catalytic and regulatory polypeptides that is modulated by ATP has suggested a novel mechanisms through which alterations in glycolytic flux can be coupled to the generation of eicosanoids which facilitate insulin secretion. To determine the potential relevance of this mechanism, we examined the kinetic characteristics, substrate specificities, and cellular locus of phospholipase A2 activity in pancreatic islets. Rat pancreatic islets contain a Ca(2+)-independent phospholipase A2 activity which is optimal at physiologic pH, preferentially hydrolyzes phospholipid substrates containing a vinyl ether linkage at the sn-1 position, and prefers arachidonic acid compared to oleic acid in the sn-2 position. Rat islet Ca(2+)-independent phospholipase A2 activity is inhibited by the mechanism-based inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one and is stimulated by ATP. Purification of beta-cells from dispersed pancreatic islet cells by fluorescence-activated cell sorting demonstrated that beta-cells (but not non-beta-cells) contain Ca(2+)-independent, ATP-stimulated phospholipase A2 activity. Remarkably, clonal RIN-m5f insulinoma cells, which possess a defect in glucose-induced insulin secretion, contain a Ca(2+)-independent phospholipase A2 which is not modulated by alterations in ATP concentration. Collectively, these results and those of an accompanying paper [Ramanadham et al. (1993) Biochemistry (following paper in this issue)] implicate Ca(2+)-independent phospholipase A2 as a putative glucose sensor which can couple alterations in glycolytic metabolism to the generation of biologically active eicosanoids and thereby facilitate glucose-induced insulin secretion.  相似文献   

17.
1. ATP (10-100 microM), but not glutamate (100 microM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 microM) nor glutamate (100 microM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 microM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 microM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 microM to 10 microM). 2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 microM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 microM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells). 3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but alpha,beta-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 microM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2'- and 3'-O-(4-Benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 microM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5'-triphosphate-2', 3'-dialdehyde (oxidized ATP, 100 microM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 microM). 4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.  相似文献   

18.
The release of excitatory amino acids from Schwann cell cultures in the rat was monitored using high-performance liquid chromatography. The basal concentration of glutamate and aspartate was 33 +/- 4 nM (mean +/- S.E.M., n = 12) and 8 +/- 1 nM (mean +/- S.E.M., n = 12), respectively. ATP (100 microM) caused a receptor-mediated increase in release of glutamate and aspartate from Schwann cell cultures. Bath application of adenosine (100 microM) was without effect on release of excitatory amino acids suggesting involvement of P2 receptors. Suramin, a competitive antagonist at P2 receptors, prevented the response to ATP. The release of excitatory amino acids evoked by ATP was not abolished in calcium-depleted saline. Pretreatment of the Schwann cultures with 50 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetracetic acid-acetoxymethyl ester (BAPTA-AM) abolished the effect of ATP. ATP-evoked release of glutamate from cultured Schwann cells was significantly reduced by thapsigargin (1 microM), an inhibitor of Ca(2+)-ATPase of the Ca2+ pump of internal stores. U73122, a selective inhibitor of receptor-coupled phospholipase C-dependent processes, abolished stimulatory effect of ATP suggesting that ATP's action is mediated through an inositol 1,4,5-triphosphate-sensitive calcium store. The action of ATP was not blocked by L-trans-pyrrolidine-2,4-dicarboxylate, an inhibitor of the electrogenic glutamate transporter, nor was it blocked in Na(+)-free medium, and glutamate release was not stimulated by a depolarizing stimulus, suggesting that ATP-evoked release of glutamate from Schwann cells is not due to the reversal of the glutamate uptake. An anion transport blocker, furosemide, reduced ATP-induced glutamate release. These results suggest that ATP-stimulated glutamate and aspartate release from Schwann cells may be through a calcium-dependent furosemide-sensitive mechanism.  相似文献   

19.
The effects of substance P on the morphine-evoked release of adenosine were examined. Substance P alone produced a multiphasic effect on release of adenosine, with release occurring at low nanomolar concentrations and at a micromolar concentration, but not at intermediate concentrations. An inactive dose of substance P augmented the morphine-evoked release of adenosine at a nanomolar concentration of morphine. Release of adenosine by substance P alone (1 nM) or substance P/morphine (100 nM/10 nM) was Ca2(+)-dependent and originated from capsaicin-sensitive nerve terminals.  相似文献   

20.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号