首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
随机选择初始聚类中心的k-means算法易使聚类陷入局部最优解、聚类结果不稳定且受孤立点影响大等问题.针对这些问题,提出了一种优化初始聚类中心的方法及孤立点排除法.该算法首先选择距离最远的两点加入初始化中心,再根据这两点将原始簇分成两个聚簇,在这两个簇中挑选方差较大的簇按照一定的规则进行分裂直至找到k个中心,初始中心的选择过程中用到孤立点排除法.在UCI数据集及人造含一定比例的噪音数据集下,通过实验比较了改进算法与其他算法的优劣.实验表明,改进后的算法不仅受孤立点的影响小、稳定性好而且准确度也高.  相似文献   

2.
在改进的PSO算法与K均值算法基础上,提出K-PSO聚类算法.首先使用改进的PSO算法寻找最优的k个初始聚类中心点,然后利用K-Means算法找到聚类结果,最后把找到的结果输出即可.算法中待求解的向量空间中每个向量被描述为一个点,在数据集中的每个项目被描述为解空间中的一个维,整个数据集作为一个带很多点的多维空间来描述,每个点映射为一个粒子,整个数据集就是一个粒子群.实验表明,改进后的算法用于入侵检测系统中,可以提高异常检测的准确率,降低误报率.  相似文献   

3.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

4.
针对K-means算法需要人为确定聚类个数和随机选取初始聚类中心导致结果陷入局部最优的问题,结合基于密度峰值的聚类算法CFSFDP(Clustering by Fast Search and Find of Density Peaks),提出一种改进的无参数K-means算法。首先,计算样本点的局部密度和离散度。然后,建立决策图,将两个参数组成向量,计算每个点到周围5个点的距离,筛选出距离大于2倍均方差且密度大于平均密度的点作为算法的初始聚类中心,统计聚类中心个数k作为聚类个数,将初始聚类个数k以及初始聚类中心作为K-means算法的初始参数对数据进行聚类。最后,对UCI(University of California, Irvine)数据集、人工建立的高斯数据集以及真实刀具振动数据集3种不同类型的数据集进行聚类。结果表明,所提算法保持传统算法全局最优性,并验证了提出算法的有效性。由于K-means是一种无监督聚类方法,在获得较优刀具状态识别结果的同时,可减少人工数据标定、有监督训练等工作量及运算成本,这对于准确实时提取数控机床刀具运行状态具有较高的实际意义。  相似文献   

5.
Gustafson-Kessel(GK)聚类算法可以有效地搜索超椭球、平面和线型的数据类,但仍然存在对初始聚类中心较敏感、易于陷入局部最优的缺陷.为此,文中根据鱼群觅食与聚类的相似性,利用人工鱼群(AFS)算法对聚类中心进行初始化,提出了改进的G-K聚类算法,并利用人工数据集和IRIS数据集进行仿真研究.结果表明,文中算法能有效地发现数据集中的聚类结构,聚类效果优于GK聚类算法.  相似文献   

6.
Kohonen聚类神经网络(KCN)在处理数据集的聚类问题时具有良好的准确性.但KCN算法在随机选取初始权值时存在不足,而且在处理存在孤立点和“噪声”时算法鲁棒性和可靠性较差.使用数据场的概念对KCN聚类算法进行了有益的改进.实验表明,改进后的算法相对于随机选取初始权值具有较高的准确率。摘要:Kohonen聚类神经网络(KCN)在处理数据集的聚类问题时具有良好的准确性.但KCN算法在随机选取初始权值时存在不足,而且在处理存在孤立点和“噪声”时算法鲁棒性和可靠性较差.使用数据场的概念对KCN聚类算法进行了有益的改进.实验表明.改进后的算法相对于随机选取初始权值具有较高的准确率.  相似文献   

7.
目的探索同时确定K-means算法的最佳聚类数K和最佳初始聚类中心的方法,使K-means算法的聚类结果尽可能地收敛于全局最优解或近似全局最优解。方法以次胜者受罚竞争学习(Rival Penalized Competitive Learning,RPCL)作为K-means的预处理步骤,以其学习结果作为K-means的聚类数和初始聚类中心并依据数据集样本自然分布定义样本密度,将此密度引入RPCL的节点权值调整,以此密度RPCL的输出作为K-means的最佳聚类数K和最佳初始聚类中心。采用UCI机器学习数据库数据集以及随机生成的带有噪音点的人工模拟数据集进行实验测试,并用不同的聚类结果评价指标对聚类结果作了分析。结果提出的密度RPCL为K-means提供了最佳的类簇数和最佳的初始聚类中心。结论基于密度RPCL的K-means算法具有很好的聚类效果,对噪音数据有很强的抗干扰性能。  相似文献   

8.
针对高维数据的聚类过程不够直观、聚类结果也不易解释的问题,本文提出了一种基于改进雷达图的交互式可视化聚类方法。首先对传统雷达图进行了改进,采用熵权法确定数据的主要特征和属性排列,在去掉非主要特征基础上采用以极径表示属性值,以属性权重确定极角的改进雷达图进行数据可视化来突出数据的主要特征;然后采用改进的k-means算法对平面上的点集进行聚类,该改进算法不需事先给定簇的个数,能够依据密度和距离对初始中心进行优化,且在聚类过程中可交互调整参数,并使用不同颜色来区分不同类别,方便观察聚类过程和结果;最后通过仿真实验表明改进的雷达图更能反应数据的分布情况,改进的聚类算法具有更高的效率和聚类准确度。  相似文献   

9.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

10.
针对海量数据聚类过程中,经典的K-均值聚类算法对其K个初始聚类中心点的选择以及数据集噪声十分敏感的问题,提出了一种针对海量数据考虑初始聚类中心点选择的聚类算法.该算法首先采用冒泡排序法对数据集进行排序,获取数据集的各维中心值组成第一个初始聚类中心点.其次,通过计算与第一个初始聚类中心点的欧式距离,对剩余候选初始聚类中心点进行优化选择,保证所有的聚类中心点均匀地分布在数据集密度较大的空间上,以此减少聚类过程中的迭代次数和提高聚类算法效率.最后,基于UCI(University of California,Irvine)中多个数据集,进行聚类算法对比实验.结果表明,在不降低聚类效果的前提下,该聚类算法的迭代次数平均降低到50%,所需的时间降低平均达10%,由实验结果还能推出,当点集的数目越多时,该算法就能表现出越明显的聚类优势效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号