首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inbred SPRET/Ei mice, derived from Mus spretus, were found to be extremely resistant to infection with a mouse adapted influenza A virus. The resistance was strongly linked to distal chromosome 16, where the interferon-inducible Mx1 gene is located. This gene encodes for the Mx1 protein which stimulates innate immunity to Orthomyxoviruses. The Mx1 gene is defective in most inbred mouse strains, but PCR revealed that SPRET/Ei carries a functional allele. The Mx1 proteins of M. spretus and A2G, the other major resistant strain derived from Mus musculus, share 95.7% identity. We were interested whether the sequence variations between the two Mx1 alleles have functional significance. To address this, we used congenic mouse strains containing the Mx1 gene from M. spretus or A2G in a C57BL/6 background. Using a highly pathogenic influenza virus strain, we found that the B6.spretus-Mx1 congenic mice were better protected against infection than the B6.A2G-Mx1 mice. This effect may be due to different Mx1 induction levels, as was shown by RT-PCR and Western blot. We conclude that SPRET/Ei is a novel Mx1-positive inbred strain useful to study the biology of Mx1.  相似文献   

2.
Three types of polymorphisms in exon 14 in porcine Mx1 gene   总被引:8,自引:0,他引:8  
Much is known about the antiviral activity of Mx proteins in species such as mouse and human. In the mouse, loss of resistibility to influenza virus has been shown to be due to specific polymorphisms in the Mx gene. This gene is therefore an interesting candidate gene for disease resistance in farm animals. The porcine Mx1 gene has already been identified and characterized based on its homology with mouse Mx1; however, until now no evidence of polymorphisms in the porcine gene has been reported. In this study, we have found two new polymorphisms in exon 14 of porcine Mx1 by DNA sequencing and confirmed their presence in different breeds, using polymerase chain reaction (PCR)–restriction fragment length polymorphisms (RFLP) with NarI and NaeI restriction enzymes. On the basis of the deduced amino acid sequence, one allele contains a deletion that may result in a frameshift to yield several amino acid substitutions and extension of the carboxyl terminal region of Mx1 protein. The deletion allele, Mx1 c, was found to be segregating in Landrace, Berkshire, Duroc, Hampshire, and Yucatan miniature pig. A second point mutation, Mx1 b, was detected in Meishan and two Vietnamese native pig breeds. All other breeds tested were fixed for the Mx1 a allele that is identical to the sequence reported previously. It will be interesting to determine if the Mx1 c deletion is associated with variation in resistance to the myxovirus family in the pig.  相似文献   

3.
Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-α, IFN-β and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-λ uses a distinct receptor complex for signaling that is not present on all cell types. Since type I IFN receptor-deficient mice (IFNAR10/0) exhibit greatly increased susceptibility to various viral diseases, it remained unclear to which degree IFN-λ might contribute to innate immunity. To address this issue we performed influenza A virus infections of mice which carry functional alleles of the influenza virus resistance gene Mx1 and which, therefore, develop a more complete innate immune response to influenza viruses than standard laboratory mice. We demonstrate that intranasal administration of IFN-λ readily induced the antiviral factor Mx1 in mouse lungs and efficiently protected IFNAR10/0 mice from lethal influenza virus infection. By contrast, intraperitoneal application of IFN-λ failed to induce Mx1 in the liver of IFNAR10/0 mice and did not protect against hepatotropic virus infections. Mice lacking functional IFN-λ receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-α/β and IFN-λ were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants lacking the IFN-antagonistic factor NS1. Interestingly, the double-knockout mice were not more susceptible against hepatotropic viruses than IFNAR10/0 mice. From these results we conclude that IFN-λ contributes to inborn resistance against viral pathogens infecting the lung but not the liver.  相似文献   

4.
Polymorphisms of the chicken antiviral MX gene   总被引:1,自引:0,他引:1  
  相似文献   

5.
O Haller  M Frese  D Rost  P A Nuttall    G Kochs 《Journal of virology》1995,69(4):2596-2601
We show that tick-transmitted Thogoto virus is sensitive to interferon-induced nuclear Mx1 protein, which is known for its specific antiviral action against orthomyxoviruses. Influenza virus-susceptible BALB/c mice (lacking a functional Mx1 gene) developed severe disease symptoms and died within days after intracerebral or intraperitoneal infection with a lethal challenge dose of Thogoto virus. In contrast, Mx1-positive congenic, influenza virus-resistant BALB.A2G-Mx1 mice remained healthy and survived. Likewise, A2G, congenic B6.A2G-Mx1 and CBA.T9-Mx1 mice (derived from influenza virus-resistant wild mice) as well as Mx1-transgenic 979 mice proved to be resistant. Peritoneal macrophages and interferon-treated embryo cells from resistant mice exhibited the same resistance phenotype in vitro. Moreover, stable lines of transfected mouse 3T3 cells that constitutively express Mx1 protein showed increased resistance to Thogoto virus infection. We conclude that an Mx1-sensitive step has been conserved during evolution of orthomyxoviruses and suggest that the Mx1 gene in rodents may serve to combat infections by influenza virus-like arboviruses.  相似文献   

6.
Genomic Southern blots of mouse-hamster somatic cell hybrids were analyzed with a probe prepared from a cDNA encoding murine Mx protein, the product of the interferon-regulated influenza virus resistance allele Mx+. Results of this analysis indicate that the Mx gene is located on mouse chromosome 16. In appropriate backcross mice, no linkage was observed between Mx and md, a marker previously mapped close to the centromere of chromosome 16, suggesting a more distal localization of Mx.  相似文献   

7.
The interferon-regulated mouse Mx gene encodes the 72-kilodalton nuclear Mx protein that selectively inhibits influenza virus replication. Mice carrying Mx+ alleles synthesize Mx protein and resist influenza virus infection, whereas mice homozygous for Mx- alleles fail to synthesize Mx protein and, as a consequence, are influenza virus susceptible. Southern blot analysis allowed us to define the following three distinct Mx restriction fragment length polymorphism (RFLP) types among classical inbred strains: RFLP type 1 in the Mx+ strains A2G and SL/NiA, RFLP type 2 in BALB/c and 33 other Mx- strains, and RFLP type 3 in CBA/J and 2 other Mx- strains. cDNA clones of Mx mRNAs from BALB/c and CBA/J cells were isolated, and their sequences were compared with that of the wild-type Mx mRNA of strain A2G. Mx mRNA of BALB/c mice has 424 nucleotides absent from the coding region, resulting in a frame shift and premature termination of Mx protein. The missing sequences correspond exactly to Mx exons 9 through 11. These three exons, together with some flanking intron sequences, are deleted from the genomes of all Mx RFLP type 2 strains. The Mx- phenotype of the Mx RFLP type 3 strain CBA/J is due to a point mutation that converts the lysine codon in position 389 to a termination codon. Mx RFLP type 3 strains have an extra HindIII site which maps to an intron and thus probably does not affect the coding capacity of Mx mRNA. We further show that the Mx mRNA levels in interferon-treated BALB/c and CBA/J cells are about 15-fold lower than in similarly treated Mx+ cells. This is probably due to decreased metabolic stabilities of the mutant mRNAs.  相似文献   

8.
Mx1 has been implicated in resistance to the influenza virus. We have now identified four alleles of the Mxl gene in domesticated breeds of pigs. Two of the alleles encode deletion variants (a 3-bp deletion in exon 13 and an 11-bp deletion in exon 14), which might be expected to interfere with Mx activity. The porcine Mxl genes corresponding to wild type, the 3-bp deletion mutant, and the 11-bp deletion mutant were cloned and expressed in NIH3T3 cells, and the antiviral activity for influenza virus was assayed. Virus yield was observed to be 10–100-fold greater with the 11-bp deletion allele than that for wild type and the 3-bp deletion alleles. The results suggest that the 11-bp deletion type is lacking antiviral activity able to contribute to the interference of influenza virus replication.  相似文献   

9.
Baliji S  Liu Q  Kozak CA 《Journal of virology》2010,84(24):12841-12849
Laboratory mouse strains carry endogenous copies of the xenotropic mouse leukemia viruses (X-MLVs), named for their inability to infect cells of the laboratory mouse. This resistance to exogenous infection is due to a nonpermissive variant of the XPR1 gammaretrovirus receptor, a resistance that also limits in vivo expression of germ line X-MLV proviruses capable of producing infectious virus. Because laboratory mice vary widely in their proviral contents and in their virus expression patterns, we screened inbred strains for sequence and functional variants of the XPR1 receptor. We also typed inbred strains and wild mouse species for an endogenous provirus, Bxv1, that is capable of producing infectious X-MLV and that also contributes to the generation of pathogenic recombinant MLVs. We identified the active Bxv1 provirus in many common inbred strains and in some Japanese Mus molossinus mice but in none of the other wild mouse species that carry X-MLVs. Our screening for Xpr1 variants identified the permissive Xpr1(sxv) allele in 7 strains of laboratory mice, including a Bxv1-positive strain, F/St, which is characterized by lifelong X-MLV viremia. Cells from three strains carrying Xpr1(sxv), namely, SWR, SJL, and SIM.R, were shown to be infectable by X-MLV and XMRV; these strains carry different alleles at Fv1 and vary in their sensitivities to specific X/P-MLV isolates and XMRV. Several strains with Xpr1(sxv) lack the active Bxv1 provirus or other endogenous X-MLVs and may provide a useful model system to evaluate the in vivo spread of these gammaretroviruses and their disease potential in their natural host.  相似文献   

10.
Mice carrying a wild-type Mx1 gene (Mx1+/+) differ from standard laboratory mice (Mx1-/-) in being highly resistant to infection with common laboratory strains of influenza A virus. We report that Mx1 also protects mice against the pandemic human 1918 influenza virus and a highly lethal human H5N1 strain from Vietnam. Resistance to H5N1 of Mx1+/+ but not Mx1-/- mice was enhanced if the animals were treated with a single dose of exogenous alpha interferon before infection. Thus, the interferon-induced resistance factor Mx1 represents a key component of the murine innate immune system that mediates protection against epidemic and pandemic influenza viruses.  相似文献   

11.
Type I interferon (IFN), which includes the IFN-alpha and -beta subtypes, plays an essential role in host defense against influenza A virus. However, the relative contribution of IFN-beta remains unresolved. In mice, type I IFN is effective against influenza viruses only if the IFN-induced resistance factor Mx1 is present, though most inbred mouse strains, including the recently developed IFN-beta-deficient mice, bear only defective Mx1 alleles. We therefore generated IFN-beta-deficient mice carrying functional Mx1 alleles (designated Mx-BKO) and compared them to either wild-type mice bearing functional copies of both IFN-beta and Mx1 (designated Mx-wt) or mice carrying functional Mx1 alleles but lacking functional type I IFN receptors (designated Mx-IFNAR). Influenza A virus strain SC35M (H7N7) grew to high titers and readily formed plaques in monolayers of Mx-BKO and Mx-IFNAR embryo fibroblasts which showed no spontaneous expression of Mx1. In contrast, Mx-wt embryo fibroblasts were found to constitutively express Mx1, most likely explaining why SC35M did not grow to high titers and formed no visible plaques in such cells. In vivo challenge experiments in which SC35M was applied via the intranasal route showed that the 50% lethal dose was about 20-fold lower in Mx-BKO mice than in Mx-wt mice and that virus titers in the lungs were increased in Mx-BKO mice. The resistance of Mx-BKO mice to influenza A virus strain PR/8/34 (H1N1) was also substantially reduced, demonstrating that IFN-beta plays an important role in the defense against influenza A virus that cannot be compensated for by IFN-alpha.  相似文献   

12.
Highly pathogenic avian influenza virus (HPAI, such as H5N1) infection causes severe cytokine storm and fatal respiratory immunopathogenesis in human and animal. Although TGF-β1 and the integrin CD103 in CD8+ T cells play protective roles in H5N1 virus infection, it is not fully understood which key signaling proteins control the TGF-β1-integrin crosstalk in CD8+ T cells to protect from H5N1 virus infection. This study showed that ADAP (Adhesion and Degranulation-promoting Adapter Protein) formed a complex with TRAF6 and TAK1 in CD8+ T cells, and activated SMAD3 to increase autocrine TGF-β1 production. Further, TGF-β1 induced CD103 expression via an ADAP-, TRAF6- and SMAD3-dependent manner. In response to influenza virus infection (i.e. H5N1 or H1N1), lung infiltrating ADAP-/- CD8+ T cells significantly reduced the expression levels of TGF-β1, CD103 and VLA-1. ADAP-/- mice as well as Rag1-/- mice receiving ADAP-/- T cells enhanced mortality with significant higher levels of inflammatory cytokines and chemokines in lungs. Together, we have demonstrated that ADAP regulates the positive feedback loop of TGF-β1 production and TGF-β1-induced CD103 expression in CD8+ T cells via the TβRI-TRAF6-TAK1-SMAD3 pathway and protects from influenza virus infection. It is critical to further explore whether the SNP polymorphisms located in human ADAP gene are associated with disease susceptibility in response to influenza virus infection.  相似文献   

13.
The mouse genome contains two related interferon-regulated genes, Mx1 and Mx2. Whereas Mx1 codes for the nuclear 72-kDa protein that interferes with influenza virus replication after interferon treatment, the Mx2 gene is nonfunctional in all laboratory mouse strains examined, since its open reading frame (ORF) is interrupted by an insertional mutation and a subsequent frameshift mutation. In the present study, we demonstrate that Mx2 mRNA of cells from feral mouse strains NJL (Mus musculus musculus) and SPR (Mus spretus) differs from that of the laboratory mouse strains tested. The Mx2 mRNA of the feral strains contains a single long ORF consisting of 656 amino acids. We further show that Mx2 protein in the feral strains is expressed upon interferon treatment and localizes to the cytoplasm much like the rat Mx2 protein, which inhibits vesicular stomatitis virus replication. Furthermore, transfected 3T3 cell lines of laboratory mouse origin expressing Mx2 from feral strains acquire slight resistance to vesicular stomatitis virus.  相似文献   

14.
Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses a distinct receptor complex for signaling that is not present on all cell types. Since type I IFN receptor-deficient mice (IFNAR1(0/0)) exhibit greatly increased susceptibility to various viral diseases, it remained unclear to which degree IFN-lambda might contribute to innate immunity. To address this issue we performed influenza A virus infections of mice which carry functional alleles of the influenza virus resistance gene Mx1 and which, therefore, develop a more complete innate immune response to influenza viruses than standard laboratory mice. We demonstrate that intranasal administration of IFN-lambda readily induced the antiviral factor Mx1 in mouse lungs and efficiently protected IFNAR1(0/0) mice from lethal influenza virus infection. By contrast, intraperitoneal application of IFN-lambda failed to induce Mx1 in the liver of IFNAR1(0/0) mice and did not protect against hepatotropic virus infections. Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants lacking the IFN-antagonistic factor NS1. Interestingly, the double-knockout mice were not more susceptible against hepatotropic viruses than IFNAR1(0/0) mice. From these results we conclude that IFN-lambda contributes to inborn resistance against viral pathogens infecting the lung but not the liver.  相似文献   

15.
Cytoplasmic Inheritance of a Cell Surface Antigen in the Mouse   总被引:4,自引:1,他引:3  
Mta is a cell surface antigen of the mouse and serves as a target for specific T killer lymphocytes. Using a killer cell assay, the antigen has been found in 72 strains of laboratory mice and, with one exception, in all tested samples of mice caught in the wild or bred from such, including Mus molossinus, Mus castaneus and Mus spretus. Five strains of rats, non-inbred NMRI mice, most substrains of NZB mice and the closely related strain NZO are negative for Mta. In reciprocal F1 crosses between several Mta+ and two Mta- strains, the antigen is maternally transmitted; that is, Mta+ females bear only positive offspring, whereas Mta- females bear only negative offspring, regardless of the genotype of the male. Since 34 foster-nursed mice had the Mta type of their genetic mothers, the factor that determines expression of Mta must be transmitted before birth and not via the milk. The cytoplasmic genes of Mta+ strains have been combined with the chromosomal genes of Mta- strains, and vice versa, by repeated backcrossing. All progeny retained the Mta type of their maternal lines. Thus, the Mta type is determined solely by maternal inheritance and is not influenced by chromosomal genes. We found no evidence of incompatibility between the cytoplasmic factors and nuclear genes of Mta- and Mta + strains.  相似文献   

16.
17.
18.
Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations.  相似文献   

19.
Activity of rat Mx proteins against a rhabdovirus.   总被引:20,自引:13,他引:7       下载免费PDF全文
E Meier  G Kunz  O Haller    H Arnheiter 《Journal of virology》1990,64(12):6263-6269
Upon stimulation with alpha/beta interferon, rat cells synthesize three Mx proteins. Sequence analysis of corresponding cDNAs reveals that these three proteins are derived from three distinct genes. One of the rat cDNAs is termed Mx1 because it is most closely related to the mouse Mx1 cDNA and because it codes for a nuclear protein that, like the mouse Mx1 protein, inhibits influenza virus growth. However, this protein differs from mouse Mx1 protein, in that it also inhibits vesicular stomatitis virus (VSV), a rhabdovirus. A second rat cDNA is more closely related to the mouse Mx2 cDNA and directs the synthesis of a cytoplasmic protein that inhibits VSV but not influenza virus. The third rat cDNA codes for a cytoplasmic protein that differs from the second one in only eight positions and has no detectable activity against either virus. These results indicate that rat Mx proteins have antiviral specificities not anticipated from the analysis of the murine Mx1 protein.  相似文献   

20.
The mouse × Chinese hamster cell line R4 4-1 contains only one mouse chromosome, the bulk of which corresponds toMus musculus chromosomes 17 and 18 (MMU17 and MMU18, respectively). A genomic library was prepared from the R4 4-1 DNA, and a mouse clone was isolated from the library, which—with the help of somatic cell hybrids-could be mapped to the MMU17. A locus defined by a 2.7-kb longBam HI probe from this clone was designatedD17Tu5 (Tu for Tübingen). The locus proved to be polymorphic among inbred strains and wild mice. By testing of recombinant inbred strains and partialt haplotypes, theD17Tu5 locus could be mapped to a position between theD17Leh66E andD17Rp17 loci within thet complex. Two alleles were found at this locus,D17Tu5 a andD17Tu5 b , defined byTaq I restriction fragment length polymorphism. Both alleles are present among inbred strains and wild mice of the speciesM. domesticus. All completet haplotypes tested carry theD17Tu5 a allele and all tested wild mice of the speciesM. musculus, with the exception of those bearingt haplotypes, carry theD17Tu5 b allele. Additional alleles are found in some populations of wild mice and in other species of the genusMus. The distribution of the two alleles among the inbred strains correlates well with their known or postulated genealogy. Their distribution between the two species ofMus and among the mice withT haplotypes suggests a relatively recent origin of thet haplotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号