首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two cultivars of Vitis vinifera L., namely Grenache and Shiraz, have been described as having near-isohydric and near-anisohydric responses respectively to soil water stress (Schultz, Plant Cell and Environment , 26, 1393–1405, 2003). Given that contrast in sensitivity to soil water, a question arises as to whether atmospheric moisture stress will elicit similar differences. The present study was undertaken to investigate this issue by comparing stomatal responses in these same two cultivars to contrasting vapour pressure deficit (VPD). Test material included field grape vines in the Barossa Valley and pot-grown vines under partial shade in Adelaide. Our experiments showed that the same isohydric/anisohydric distinction as described by Schultz (2003) is apparent in leaf responses to atmospheric moisture stress. In the more isohydric cultivar, Grenache, stomatal conductance is more responsive to changes in VPD. This heightened sensitivity (compared with Shiraz) appears to be associated with higher levels of abscisic acid (ABA) in Grenache xylem sap. Expression studies on the key genes in the ABA biosynthetic pathway indicate that regulation of the V.v . nced1 gene expression in leaf tissue, but not in the root tissues, is associated with the changes in the xylem sap ABA. Moreover, the two cultivars (Grenache and Shiraz) differed with respect to both scale and time course of those responses. We conclude that these two Vitis vinifera cultivars do indeed differ significantly in the way that they respond to potentially stressful atmospheric conditions, and that ABA physiology is a key process in these contrasting responses. An understanding of such mechanisms, including the relative importance of roots and shoots in determining vine response to abiotic stress, is highly relevant to irrigation scheduling, and to management of associated variation in vineyard productivity across diverse environments.  相似文献   

2.
In grapevines, stomatal aperture decreases after a mid-morning peak during summer days. Afternoon stomatal closure increases in non-irrigated plants as water limitation progresses, which suggests the involvement of abscisic acid (ABA) in the control of stomatal aperture. The objective of this work was to study the seasonal and diurnal time-courses of CO2 assimilation rate, leaf conductance, leaf water potential +, and ABA concentration in xylem sap, leaves, flowers and berries in non-irrigated field-grown Tempranillo grapevines throughout reproductive development. Leaf decreased throughout fruit development because water availability decreased towards the end of the reproductive cycle. CO2 assimilation rate, leaf conductance and xylem ABA concentration also decreased during the course of the growing season. Combining all measurements xylem ABA was either not correlated, or only slightly correlated, with leaf water status + and daily leaf conductance, respectively. This lack of relationship indicates that xylem ABA during fruit ripening had functions other than provision of a non-hydraulic signal. On a seasonal basis, xylem ABA concentration measured in non-irrigated grapevines was well related to berry ABA concentration, especially at the end of fruit development (veraison and harvest).  相似文献   

3.
A large-scale, long-term irrigation experiment was established near Waikerie in the South Australian Riverland to investigate the feasibility of controlling berry size and ripening at the vineyard scale with modern irrigation systems. Irrigation treatments were devised to impose water stress, by withholding irrigation, during four periods of berry development after flowering of Vitis vinifera (variety Shiraz). Varying water deficits were achieved during each period and between the four seasons, which were climatically diverse. In one season water deficit during the period after flowering resulted in the greatest reduction in berry weight compared with that of well-watered vines, however, in another, water deficit during this period had no effect on berry weight. By comparison, berries appeared to be insensitive to water deficit during the month before harvest in all four seasons. A soil water deficit index was derived to compare the varying levels of water deficit between treatments and seasons on berry development. Deficit effects on berry development were assessed using either comparative growth rate or berry weight near harvest. Regression analysis of berry development against soil water deficit indicated that berries were most sensitive to water stress during the post flowering period.  相似文献   

4.
Carbon isotope discrimination (Δ) is used to determine differences in apparent transpiration efficiency amongst genotypes of many C3 plant species. In this present study the possible influence of certain commercially-available rootstocks on apparent transpiration efficiency in grapevines was investigated. Variation in Δ was studied for Shiraz and each of six rootstock varieties when grown either (1) on their own roots, (2) with Shiraz grafted as a scion onto different rootstocks (conventional graft) or (3) with rootstock varieties grafted onto Shiraz roots (reciprocal graft). When grown on own roots or as a reciprocal graft, there was significant variation in Δ. In contrast, there was no significant variation in Δ for Shiraz (as a scion variety) when grafted onto different rootstock varieties (conventional graft). These results imply a predominance by the scion genotype in determining variation in the leaf-level physiological characteristics that determine apparent transpiration efficiency under well-watered (and non-saline) conditions.  相似文献   

5.
This paper describes variation in transpiration efficiency ‘W’ (where W = dry matter produced/water transpired) among grapevine genotypes grown under well‐watered conditions in either a glasshouse or a vineyard. Nineteen genotypes were grown in a glasshouse where growth and transpiration were measured. W ranged from 2.5 to 3.4 g dm/kg H2O transpired. Carbon‐isotope discrimination (Δ) of laminae dry matter ranged from 20.8 to 22.7%o and there was a negative relationship (R2= 0.58) between W and Δ. A large proportion of variation in W could be attributed to variation in stomatal conductance. Genotypic variation in photosynthetic capacity was also an important component of variation in W. In a second experiment, lamina Δ was measured for mature field‐grown Shiraz and Chardonnay, grown either on their own roots or grafted to five different rootstocks, and maintained at three sites under well‐watered conditions. At all sites and regardless of rootstock, the laminae of Chardonnay had Δ values 1 to 2%o lower than Shiraz. There was also a 1 to 2%o variation among the sites. Rootstock variety affected Δ values inconsistently and by a maximum of 0.5%o. Leaf gas exchange measurements were performed at a single site on sun‐exposed leaves of Chardonnay and Shiraz on either their own roots or 1103 Paulsen, a moderate to high vigour rootstock. There was no significant effect of rootstock on leaf gas exchange and photosynthetic rates did not differ between scion varieties. However, Chardonnay had a 20% lower stomatal conductance and a 1.4‐fold higher ratio of CO2assimilation/H2O transpiration (A/T) indicating a potentially higher W, at a leaf level, for Chardonnay compared with Shiraz. We conclude that photosynthetic capacity was also higher for Chardonnay. Δ values, predicted from the Ci/Ca ratio calculated from leaf gas exchange measurements, did not differ significantly from measured values for laminae Δ. This similarity for Δ, in conjunction with the fact that the lower Δ of Chardonnay was reflected in a higher A/T ratio, suggests that Δ may be a reliable predictor of comparative W under vineyard conditions.  相似文献   

6.
The greatest fear of global climate change is drought. World‐wide, 61% of countries receive rainfall of less than 500 mm annually; domestication of wheat first occurred in such a semiarid region of southwestern Asia, and it seems that wheat foods originally came from dryland gardens. Wheat plants respond to drought through morphological, physiological and metabolic modifications in all plant parts. At the cellular level, plant responses to water deficit may result from cell damage, whereas other responses may correspond to adaptive processes. Although a large number of drought‐induced genes have been identified in a wide range of wheat varieties, a molecular basis for wheat plant tolerance to water stress remains far from being completely understood. The rapid translocation of abscissic acid (ABA) in shoots via xylem flux, and the increase of ABA concentration in wheat plant parts correlate with the major physiological changes that occur during plant response to drought. It is widely accepted that ABA mediates general adaptive responses to drought. For a relatively determinate target stress environment, and with stable genotype × environment interaction, the probability for achieving progress is high. This approach will be possible only after we learn more about the physiology and genetics of wheat plant responses to water stress and their interactions. The difficulties encountered by molecular biologists in attempting to improve crop drought tolerance are due to our ignorance in agronomy and crop physiology and not to lack of knowledge or technical expertise in molecular biology. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
Yeast cells have a minimum N requirement to ferment a must through to dryness, so that grape N content (hence must N) becomes critical in meeting that prerequisite. Viticultural practices aimed at meeting that N requirement are of special relevance because interactions between rootstock and vineyard nitrogen supply strongly influence scion mineral nutrient status as well as shoot vigour, and via those processes, fruit composition. Such outcomes were investigated in a field trial involving Shiraz on three rootstocks viz. Teleki 5C, Schwarzmann and Ramsey. Five N supply regimes, varying from 0 to 80 kg/(haseason), were imposed through a drip-irrigation system during two periods (either flowering to veraison, or post-harvest to leaf-fall, or both) over three successive growing seasons. Post-harvest N supply increased scion leaf N and nitrate N concentrations at flowering for vines on Teleki 5C and Schwarzmann. By veraison, N recently applied in the flowering to veraison period elevated these indicators of N status in all vines on all rootstocks. Grape yields from vines on Teleki 5C and Schwarzmann were elevated by N supply after harvest, whereas juice soluble solids levels were lowered. Free amino acids in Shiraz juice were dominated by non-assimilable N, amounting to about 50% or more of the total free amino-N in the juice. Increasing N supply increased free amino acid concentrations in the juice of berries from vines on all rootstocks, but only vines on Schwarzmann derived any benefit from N supplied after harvest. The highest concentrations of free amino acids were measured in the berries from vines on Schwarzmann receiving 80 kg N/(ha.season). Of immediate practical relevance for N management of Shiraz grapevines on either Teleki 5C or Ramsey rootstocks, the minimum value for assimilable free amino-N concentration required to ferment a must through to dryness was not achieved if vineyard N application was limited to the post-harvest period.  相似文献   

8.
Background and Aims: Variability in vine vigour is a commonly observed feature in vineyard blocks. Although this aspect is well recognised among viticulturalists, impacts of vigour variability on vine function and resource use efficiency are seldom considered in management decision-making. This study examined influences of vine vigour variability on vine physiological performance and resource use in a commercially managed vineyard block. Methods and Results: The vineyard block was divided into different vigour zones using plant cell density data derived from aerial multi-spectral imaging of the study block. Gas exchange and under-vine soil moisture status were measured in some of the vigour zones. Low vigour vines had consistently lower photosynthesis and stomatal conductance rates than high vigour vines. The differences were evident both during soil-drying and rewetting. Similarly, irrigation water utilisation was markedly lower in low than in high vigour vines. Vine fruit yield was linearly and positively related to vines' capacity to utilise applied water. Conclusions: Vigour has considerable influence on vine physiological performance and on resource utilisation capacity. Uniform irrigation application to a block with variable vigour (which is the norm currently) leads to spatially inefficient resource use, and consequently to a marked within-block variation in irrigation water productivity. Significance of the Study: The demonstration that variation in vigour has a corresponding effect on resource utilisation has direct relevance for managing vineyard inputs such as irrigation or fertilisers.  相似文献   

9.
Berries of Vitis vinifera L. cv Shiraz can undergo weight loss during later stages of ripening. Existing published views on how weight loss occurs are based on changes in capacity of the vascular system to import water during development (McCarthy and Coombe, Australian Journal of Grape and Wine Research, 5, 17–21, 1999). One important element of these views is the proposed cessation of water flow through the xylem after veraison. We have now measured the water flow into berries of Shiraz and Chardonnay as they develop using the pressure probe and the high pressure flow meter (HPFM). The pressure probe connected to the pedicel of individual berries provided measurements of single berry hydraulic conductance. By systematic excision of tissue segments of the berry and pedicel we determined where in the pathway hydraulic conductance changed during development. The HPFM was used on whole bunches showing that berries (including pedicels) represent parallel high hydraulic resistances and that the hydraulic resistance of the bunch axis was rather small. The hydraulic conductance per berry could be determined from excision experiments. There was close agreement between the pressure probe and HPFM measurements. Both showed a ten‐fold reduction in hydraulic conductance of whole berries from veraison to full ripeness. Shiraz had hydraulic conductances that were 2‐ to 5‐fold higher than those for Chardonnay. Shiraz maintained a higher hydraulic conductance past 90 days after flowering than Chardonnay. The decrease in hydraulic conductance occurred in both the distal and proximal parts of the berry for both varieties. The pressure probe also provided measurements of the xylem pressure that non‐transpiring berries could develop. These pressures were –0.2 to –0.1 MPa until veraison and increased to zero when the juice osmotic potential reached about –3 MPa in Chardonnay and –4 MPa in Shiraz. The results suggest values of the reflection coefficient of the osmotic barrier around the xylem vessels of about 0.1–0.2 at veraison decreasing to 0 at harvest. It is suggested that in addition to changes in xylem anatomy, aquaporins in berry membranes may play a role in regulating hydraulic conductance. Water movement from the berry back to the parent vine via the xylem (backflow) may be an important component of berry weight loss in Shiraz, particularly if the phloem ceases functioning at high osmotic potentials near maximum weight. Backflow could account for a weight loss of 43 mg per day in Shiraz berries for a relatively small gradient of 0.1 MPa.  相似文献   

10.
Background and Aims: Water deficit is known to influence berry development as well as flavonoid metabolism. The aim of this study was to investigate the influence of pre‐ and post‐veraison water stress on the proanthocyanidin and anthocyanin accumulation on berry samples selected at comparable physiological maturity, especially after veraison while avoiding sugar influence. Methods and Results: Three irrigation treatments were applied by a drip irrigation system on three rows of 30 vines from an experimental Shiraz vineyard. Pre‐veraison water stress had no effect on total proanthocyanidin accumulation but increased accumulation of all anthocyanins except malvidin and p‐coumaroylated derivatives, whereas post‐veraison water stress enhanced the overall anthocyanin biosynthesis, particularly malvidin and p‐coumaroylated derivatives. Conclusions: Pre‐ and post‐veraison water stress affected the anthocyanin composition differently, suggesting a differential regulation of the genes involved in the last steps of anthocyanin biosynthesis pathway. Significance of the Study: The study identifies the effect of pre‐ and post‐veraison water stress while avoiding sugar influence on anthocyanin accumulation which could be maximised since both stresses differently impacted hydroxylation and methylation of anthocyanins.  相似文献   

11.
Environmental and phenological correlatives associated with the onset of weight loss during ripening in Vitis vinifera cv. Shiraz berries were examined. An irrigation experiment concerned with transient water deficit effects on berry growth over four consecutive seasons provided source data. Timing of maximum berry weight was more closely correlated with the number of days after flowering than with temperature summation. Prior to maximum berry weight, Brix was more closely correlated with days after flowering than with temperature summation, while the number of days from flowering to 10 and 15Brix was remarkably uniform despite contrasting seasons. Driving variables for weight loss during advanced ripening remain a matter of conjecture, but loss of berry water under highly evaporative conditions of late summer is a likely contributor.  相似文献   

12.
为研究嫁接对烤烟烟碱和钾含量的影响,选用烟碱和钾积累效率不同的基因型进行嫁接,并对烤后烟叶的烟碱和钾含量进行测定。试验结果表明,不同烤烟基因型烟碱和钾积累效率差异显著;自身嫁接对烟碱和钾积累的影响不显著;采用烟碱和钾积累效率不同的烤烟基因型进行嫁接,以烟碱和钾积累效率高的基因型为砧木可以提高烟碱和钾积累效率低的接穗烟叶的烟碱和钾含量,使用烟碱和钾积累效率低的基因型为砧木可以降低烟碱和钾积累效率高的接穗烟叶的烟碱和钾含量;多数嫁接组合烤后烟叶的烟碱和钾含量处于砧木和接穗之间,呈现趋中性,部分嫁接组合表现出超亲性状。嫁接技术可以用于调节烤烟叶片中烟碱和钾的含量。   相似文献   

13.
Background and Aims:  Grapevines ( Vitis vinifera L.) are considered to have non-climacteric fruit, but the trigger initiating ripening (veraison) is poorly understood. This study aimed to further investigate the role of abscisic acid (ABA) during berry ripening.
Methods and Results:  In field-grown grapes over three seasons, free ABA levels increased at veraison then subsequently declined to low levels. Bound ABA increased as the free ABA level decreased after 10–11 weeks post-flowering (wpf), but ABA must also be degraded and/or exported. The absence of a large pool of bound ABA before veraison makes it unlikely that the increase in free ABA is due to the mobilization of conjugated ABA. The expression pattern of genes crucial for ABA synthesis, zeaxanthin epoxidase and two 9-cis-epoxycartenoid dioxygenases (NCEDs) indicates that berries may have the potential to synthesize ABA in situ . However, the expression profile of these genes did not correlate well with ABA levels indicating that ABA accumulation is under more complex control. The application of (+)-ABA advanced ripening as measured by colour formation, berry size increase and to a lesser extent sugar accumulation and altered the expression of one of the NCED genes.
Conclusions:  The changes in berry ABA levels around the time of veraison, which influence the timing of ripening, are under complex developmental control.
Significance of the Study:  The improved understanding of the control of berry ripening is vital to attempts to successfully manipulate this process.  相似文献   

14.
Shiraz and Chardonnay grapevines that had been initially assessed for Cl exclusion in the 1996 and 1997 harvest seasons at both Merbein (inland region of Victoria) and at Padthaway (sub‐coastal region of South Australia), were re‐evaluated in 2003 and 2004 at those same two locations. Both scion varieties were grown either on their own roots or were grafted to one of the following rootstocks: Ramsey, 1103 Paulsen, 140 Ruggeri, K51‐40, Schwarzmann, 101‐14, Rupestris St George and 1202 Couderc. Both sites had been irrigated with saline water since 1994. The salinity of irrigation water at Merbein was approximately 2.1 dS/m; at Padthaway irrigation salinity varied between approximately 1.6 dS/m and 2.5 dS/m during the survey period. Changes in the Cl‐excluding ability of all rootstock/scion combinations between 1996, 1997 and 2003, 2004 were based upon analysis of Cl concentrations in grape juice and in laminae at harvest, as well as Electrical Conductivity (EC), pH and Sodium Adsorption Ratio (SAR) of the 1:5 soil:water extract. Taking juice Cl as indicative of rootstock effectiveness for Cl exclusion, and considering data from Merbein, our analyses demonstrated that overall means for Shiraz juice Cl increased from around 190 to 427 mg/L over the survey period (7 years). In Chardonnay grapevines at Merbein, overall mean concentrations of Cl in juice increased from around 70 to around 225 mg/L over 7 years. Significant differences between rootstocks were evident, with some rootstocks at Merbein showing a diminished capacity for Cl exclusion in 2003 and 2004. By contrast, in Padthaway there was no consistent deterioration in Cl‐excluding capacity by rootstocks supporting either Shiraz or Chardonnay as scions. In 2004 there were significant differences between grapevines at Merbein and Padthaway in the concentration of Cl accumulated, even though the mean soil EC1:5 after harvest for 0–90 cm depth was the same at both sites, namely 0.4 dS/m. Containment of grapevine salinity at Padthaway (relative to Merbein) between 1996/97 and 2003/04 was most likely due to factors such as a lower volume of saline irrigation, double the rainfall and 27% lower pan evaporation.  相似文献   

15.
Dynamics of grape berry growth and physiology of ripening   总被引:3,自引:0,他引:3  
Data from two experiments on development of grape berries is re-examined with emphasis on partitioning of berry weight into non-solutes per berry (largely water) and solutes per berry (largely sugar), using weight times juice °Brix. This approach is based on the thought that, since xylem flow is blocked after veraison, time curves of solutes per berry indicate the activity of phloem transport into the berry during ripening growth. Experiment 1: Measurements of Muscat Gordo Blanco berries from inflorescences with a spread of flowering times showed typical double-sigmoid volume/time curves but with divergent rates and amounts of volume increase. Despite this divergence, °Brix curves after veraison were almost coincident because, in each case, the rate of increase in solutes per berry was proportional to that of berry volume. These results indicate that sugar and water increments after veraison are linked and depend on the same source, namely, phloem sap. Experiment 2: An irrigation experiment on cv. Shiraz also showed divergent berry weight curves between treatments and years but with the difference that all berries shrank after a maximum berry weight was attained at 91 days after flowering (at about 20 °Brix). At this point, the curves of solutes per berry slowed then plateaued, indicating that inflow of phloem sap had become impeded. Prior to shrinkage these berries accumulated primary metabolites (mainly phloem sugar) but, during shrinkage, when berries were apparently isolated from vascular transport, non-anthocyanin glycosides accumulated. These results have implications for the study of berry flavour buildup and berry composition, and also for the understanding of sink competition within the vine, fresh and dried yield, and juice °Brix levels.  相似文献   

16.
Background and Aims: Within-site comparisons were made of rootstock effects on yield, and chloride and sodium concentrations in petioles, juice and wine of Shiraz and Chardonnay vines at sites with irrigation water salinities (ECiw) ranging from low (0.4 dS/m) to moderate-high (1.8 to 3.3 dS/m). It also compared consistency of yield performance of the various rootstocks with both scions over 8 years at one site with an ECiw of 2.1 dS/m. Methods and Results: Chardonnay and Shiraz on own roots and on Ramsey, 1103 Paulsen, 140 Ruggeri, K51-40, Schwarzmann, 101-14, Rupestris St. George and 1202 Couderc were compared. Ramsey resulted in better yields relative to most of the other rootstocks at three of the four sites for each scion. Exceptions were the low salinity site where Schwarzmann was best with Chardonnay, and Padthaway where 140 Ruggeri was best with Shiraz. Chardonnay wine chloride concentrations were similar to grape juice chloride concentrations, but Shiraz wine chloride concentrations were on average 1.7-fold higher than grape juice chloride. Conclusions: Shiraz on own roots, K51-40 and 1202C rootstocks carry some risk of accumulating unacceptable levels of chloride in grape juice and wine when the salinity of the irrigation water is at moderate to high levels. Rootstocks K51-40 (with Chardonnay and Shiraz) and potentially 101-14 (with Shiraz) should be avoided in situations of long term irrigation with moderate to high salinity water. Significance of the Study: The study identifies rootstocks with acceptable yields and grape juice chloride concentrations for potential use in regions affected by salinity.  相似文献   

17.
Anatomical studies on the movement of a xylem tracer dye were combined with functional studies on changes in grape berry volume during final stages of berry ripening to gauge xylem effectiveness. Movement of a xylem tracer dye into pre-veraison fruit was compared with movement into post-veraison fruit by feeding a solution of acid fuchsin to excised shoots with bunches still attached, and then sectioning fruit for photo-microscopy. Those comparisons confirmed published studies showing an apparent blockage to dye movement along major vessels within the brush tissue of post-veraison fruit. However, our functional approach yielded a different impression of vascular activity. A continuation of xylem transport in ripening fruit was inferred from comparisons of berry volume where pedicels were either girdled (phloem interrupted, but xylem intact) or excised (both phloem and xylem interrupted). Volume changes in manipulated berries were compared with immediately adjacent intact control berries within the same bunch. Control fruit lost volume subsequent to 78 days after flowering (DAF) while manipulated fruit lost volume from the first day of treatment at 67 DAF. By harvest time at 95 DAF, both control fruit and girdled fruit had fallen to 91% and excised fruit to 46% of maximum volumes recorded around 78 DAF. Berry volume loss in girdled fruit was further enhanced by deficit irrigation. We conclude that xylem flow into those Shiraz berries must have continued beyond veraison despite dye evidence of a vessel blockage within the brush region of analogous post-veraison fruit.  相似文献   

18.
Sunmuscat scions, either grafted onto one of seven rootstock, or as own-rooted vines, were grown under irrigation according to the practices of warm-climate viticulture in north-western Victoria. The trial was located within a commercial vineyard on a sandy loam soil, and represented a typical replant situation. Grapevine performance was assessed over five seasons, viz. 1999–2004 inclusive, in terms of yield per vine, berry weight, juice composition and vigour (based on trunk girth). The highest yielding rootstock over the trial period was 1103 Paulsen (28.9 kg /vine) followed by 140 Ruggeri and Ramsey (26.1 and 25.8 kg /vine respectively), S04 (22.5 kg /vine), Schwarzmann, 101-14 and Teleki 5A (19.9, 18.7 and 18.4 kg /vine respectively). Scions on their own roots returned lowest yield (15.5 kg /vine). Berry weights were largest for the three high yielding rootstocks (2.3 g) and smallest with own roots (2.0 g). Total soluble sugars in harvested fruit were largely unaffected by rootstock in most seasons, although taken over all seasons, fruit from scions grafted onto Ramsey rootstock had the lowest levels, while Teleki 5A had the highest levels (viz. 23.4oBrix and 24.7oBrix respectively). Comparative vigour for all seven graft combinations was inferred from trunk circumference. There was a 2-fold difference in rootstock girth below the graft union (viz. 265 mm for 1103 Paulsen, compared to 135 mm for S04), whereas differences in the scion girth above the graft union were minor (only 16%). Relative compatibility of scion and stock was inferred from 'girth ratio' of trunk circumference above compared with below the graft union. Girth ratio was highest for Sunmuscat scions grafted onto SO4 rootstock, and lowest for scions on 1103 Paulsen. Scion girth and vine yield were broadly correlated.  相似文献   

19.
Improving water use efficiency (WUE) in grapevines is essential for vineyard sustainability under the increasing aridity induced by global climate change. WUE reflects the ratio between the carbon assimilated by photosynthesis and the water lost in transpiration. Maintaining stomata partially closed by regulated deficit irrigation or partial root drying represents an opportunity to increase WUE, although at the expense of decreased photosynthesis and, potentially, decreased yield. It would be even better to achieve increases in WUE by improving photosynthesis without increasing water loses. Although this is not yet possible, it could potentially be achieved by genetic engineering. This review presents current knowledge and relevant results that aim to improve WUE in grapevines by biotechnology and genetic engineering. The expected benefits of these manipulations on WUE of grapevines under water stress conditions are modelled. There are two main possible approaches to achieve this goal: (i) to improve CO2 diffusion to the sites of carboxylation without increasing stomatal conductance; and (ii) to improve the carboxylation efficiency of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The first goal could be attained by increasing mesophyll conductance to CO2, which partly depends on aquaporins. The second approach could be achieved by replacing Rubisco from grapevine with Rubiscos from other C3 species with higher specificity for CO2. In summary, the physiological bases and future prospects for improving grape yield and WUE under drought are established.  相似文献   

20.
Improving water use efficiency (WUE) in grapevines is essential for vineyard sustainability under the increasing aridity induced by global climate change. WUE reflects the ratio between the carbon assimilated by photosynthesis and the water lost in transpiration. Maintaining stomata partially closed by regulated deficit irrigation or partial root drying represents an opportunity to increase WUE, although at the expense of decreased photosynthesis and, potentially, decreased yield. It would be even better to achieve increases in WUE by improving photosynthesis without increasing water loses. Although this is not yet possible, it could potentially be achieved by genetic engineering. This review presents current knowledge and relevant results that aim to improve WUE in grapevines by biotechnology and genetic engineering. The expected benefits of these manipulations on WUE of grapevines under water stress conditions are modelled. There are two main possible approaches to achieve this goal: (i) to improve CO2 diffusion to the sites of carboxylation without increasing stomatal conductance; and (ii) to improve the carboxylation efficiency of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The first goal could be attained by increasing mesophyll conductance to CO2, which partly depends on aquaporins. The second approach could be achieved by replacing Rubisco from grapevine with Rubiscos from other C3 species with higher specificity for CO2. In summary, the physiological bases and future prospects for improving grape yield and WUE under drought are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号