首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder radish on N dynamics and root growth. Field experiments were carried out on a humid temperate sandy loam soil. Aboveground biomass and soil inorganic N were determined in late autumn; N uptake and grain yield of winter wheat were measured at harvest. Nitrate leaching was estimated from soil water samples taken at 1 m depth. Root growth was measured late autumn using the core break and root washing methods. Winter wheat root growth dynamics were followed during the growing season using the minirhizotron method. The 2013–2014 results showed that early seeding of wheat improved autumn growth and N uptake and reduced N leaching during the winter compared with the normal seeding time. Early‐seeded wheat (WWearly) was, however, not as efficient as fodder radish at reducing N leaching. Proper establishment of WWearly was a prerequisite for benefiting from early seeding, as indicated by the 2012–2013 results. Early seeding improved root growth throughout the 2013–2014 growing season compared with normal seeding time, but had no significant effect on crop grain yield. Our results indicate the potential of using early seeding as a tool to limit drought susceptibility and increase nutrient uptake from the subsoil.  相似文献   

2.
During 2005–2007, studies were carried out in two field experiments in southwest Sweden with separately tile‐drained plots on a sandy soil (three replicates) and on a clay soil (two replicates). The overall aim was to determine the effects of different cropping systems with catch crops on losses of N, P and glyphosate. Different times of glyphosate treatment of undersown ryegrass catch crops were examined in combination with soil tillage in November or spring. Drainage water was sampled continuously in proportion to water flow and analysed for N, P and glyphosate. Catch crops were sampled in late autumn and spring and soil was analysed for mineral N content. The yields of following cereal crops were determined. The importance of keeping the catch crop growing as long as possible in the autumn is demonstrated to decrease the risk of N leaching. During a year with high drainage on the sandy soil, annual N leaching was 26 kg/ha higher for plots with a catch crop killed with glyphosate in late September than for plots with a catch crop, while the difference was very small during 1 yr with less drainage. Having the catch crop in place during October was the most important factor, whereas the time of incorporation of a dead catch crop did not influence N leaching from either of the two soils. However, incorporation of a growing catch crop in spring resulted in decreased crop yields, especially on the clay soil. Soil type affected glyphosate leaching to a larger extent than the experimental treatments. Glyphosate was not leached from the sand at all, while it was found at average concentrations of 0.25 μg/L in drainage water from the clay soil on all sampling occasions. Phosphorus leaching also varied (on average 0.2 and 0.5 kg/ha/yr from the sand and clay, respectively), but was not significantly affected by the different catch crop treatments.  相似文献   

3.
Domestication of biennial Lepidium campestre L. offers possibilities for more varied crop rotations in cold regions, with increased crop cover during winter. In the first winter after sowing, L. campestre can reduce nitrogen (N) leaching before harvesting in the second year. In this system no soil tillage is needed during the first year, unlike in systems with annual crops. A three-year leaching study on loam soil in southern Sweden revealed significantly (p?<?0.05) lower flow-weighted mean total nitrogen (TN) concentration in drainage water under L. campestre (5.8 mg TN L?1) compared with a control treatment (no catch crop and autumn mouldboard ploughing) (9.6 mg TN L?1). In two years of observations, Lepidium campestre had lower flow-weighted mean TN concentration (6.2 mg L?1) than a mixed Vicia villosa L. (hairy vetch)/Secale cereale (winter rye) catch crop (10.2 mg L?1) and rather similar concentration to a Raphanus sativus (oilseed radish) catch crop (5.7 mg TN L?1), both sown after harvest of the main crop. However, L. campestre appeared to have a negative effect on total phosphorus (TP) leaching, with TP concentration in drainage of 0.05 mg L?1 compared with 0.01–0.02 mg L?1 for the other catch crops and the control.  相似文献   

4.
In many coarse textured soils, limited root development and biomass production are attributed to adverse physical conditions in the subsoil. The current study was undertaken on an Arenic Acrisol located in Northeast Thailand (i) to assess whether subsoil physical characteristics influence crop rooting depth, and (ii) to compare the benefits associated with conventional tillage with that of localised subsoil loosening on crop performance and selected soil attributes. Control plots consisted of disk ploughing; the implemented treatments were conventional deep-ripping and localised slotting below the planting line. A crop rotation consisting of a legume followed by maize was established annually to assess the impact of these treatments on crop performance. In the control treatment, root development was restricted to the topsoil (0–20 cm) due to high subsoil bulk density (>1.6 Mg m−3). After deep-ripping, no improvement was observed in bulk density, rooting depth and in crop performance. The implementation of a slotting treatment systematically improved root development in the slotted subsoil, root impact frequency increasing from <0.2 to 0.6–0.8 (P = 0.01) despite no change in the bulk densities of the subsoil. This systematic improvement in root development could be explained by (i) reduced slumping that enable root development prior to recompaction and/or (ii) preferential drainage in the slot and therefore decreased resistance to root penetration. In a dry year maize yield was improved by 78% (P = 0.01); the deep-rooting legume Stylosanthes was tested only a wet year and its biomass production increased by >40% (P = 0.03). This study highlights the detrimental impact of subsoil compaction on root development and the potential role of slotting in coarse textured soils as a long-term management tool in addressing adverse subsoil physical characteristics that limit deep-rooting.  相似文献   

5.
Abstract. Each year since 1986 information has been collected about the farming systems at intersections of a nationwide 7 km square grid in Denmark. These management data and corresponding soil analyses were used in the model DAISY to simulate water and nitrogen dynamics. The model was validated with respect to harvested dry matter yield and nitrogen content in the soil. Simulated nitrate leaching from farmland areas from 1 April 1989 to 31 March 1993 was related to precipitation zones, soil type, fertilizer strategies and cropping systems. The mean simulated nitrate leaching for the whole of Denmark was 74 kg N/ha/yr, with a large yearly variation in the period considered. The simulated nitrate leached from soils with a sandy subsoil corresponded to 51% of the applied fertilizer, twice that leached from soils with a loamy subsoil. The application of pig manure resulted in average leaching losses of 105 kg N/ha/yr. The simulated nitrate leaching losses at sites where only artificial fertilizer was applied were in the following order: cereal with undersown grass < crop followed by winter cereal or winter rape < cereal or rape without a catch crop < root crops without a catch crop. Where only artificial fertilizers were applied, the simulated mean annual leaching was 59 kg N/ha from spring barley and 40 kg N/ha from winter wheat. A map of simulated nitrate leaching in Denmark was produced using a Geographical Information System.  相似文献   

6.
In temperate climates with surplus precipitation and low temperatures during autumn and winter, nitrate catch crops have become crucial in reducing nitrate leaching losses. Preferably, the N retained by the catch crop should remain in the soil and become available to the next main crop. Fodder radish (Raphanus sativus, L.) has emerged as a promising nitrate catch crop in cereal cropping, although the course of remineralization of residue N following termination of this frost‐sensitive crucifer remains obscured. We incubated radish residues of different age (different planting and harvest dates) with a loamy sand soil; mineralization of residue N was determined after 1, 2, 4 and 7 months of incubation at 2 °C and 10 °C. Incubations with soil only and with residues of white mustard (Sinapis alba, L) and perennial ryegrass (Lolium perenne, L.) were included as references. Using linear regression, net N release was fitted to plant chemical characteristics (initial concentrations of N, fibre fractions, lignin and C/N ratio). Residue C/N ratio (ranging from 10 to 25) and N concentration (ranging from 17 to 40 mg N/g dry matter) showed superior fits to net N release at both temperatures (r2, 0.64–0.94) while fibre analyses provided inferior fits (r2, 0.12–0.64). This was true across planting date and plant age. Net N release after 7 months of incubation at 2 °C and 10 °C accounted for up to 40% and 50% of residue N, respectively. During most of the incubation period, nitrate dominated the mineral N pool at both temperatures. The N mineralization and nitrification potential at these low soil temperatures suggest that a considerable fraction of the N captured by nitrate catch crops may be remineralized, nitrified and thus available for plant uptake but also for loss by leaching and denitrification.  相似文献   

7.
Winter cover crops are essential in conservation tillage systems to protect soils from erosion and for improving soil productivity. Black oat (Avena strigosa Schreb) and oilseed radish (Raphanus sativus L.) could be useful cover crops in the southeastern USA, but successful adoption requires understanding their influence on N availability in conservation tillage systems. Black oat and oilseed radish were compared to crimson clover (Trifolium incarnatum L.) and rye (Secale cereale L.) for biomass production and effects on N mineralization during the summer crop growing season from fall 1998 through summer 2002 near Watkinsville, GA. Rye produced 40 to 60% more biomass, although N contents were less than the other cover crops. Oilseed radish and black oat N contents were similar to crimson clover. Black oat, oilseed radish, and crimson clover C/N ratios were less than 30, whereas rye averaged 39. Amount of N mineralized in 90 days (N min90) measured with in situ soil cores was 1.3 to 2.2 times greater following black oat, crimson clover, and oilseed radish than following rye. No differences in N min90 were found between black oats, crimson clover, and oilseed radish in 1999 and 2000. The amount of potentially mineralizable N (N 0) was not different due to cover crop, but was 1.5 times greater in 2000 and 2002 than in 1999. The rate of N mineralization (k) was 20 to 50% slower following rye than the other three cover crops. Black oat and oilseed radish biomass production and soil N mineralization dynamics were more similar to crimson clover than to rye, which indicates that they could be used as cover crops in the southeast without significant changes in N recommendations for most crops.
Harry H. SchombergEmail:
  相似文献   

8.
《Soil Use and Management》2018,34(3):335-342
This study investigates the effect of different crop rotation systems on carbon (C) and nitrogen (N) in root biomass as well as on soil organic carbon (SOC ). Soils under spring barley and spring barley/pea mixture were sampled both in organic and conventional crop rotations. The amounts of root biomass and SOC in fine (250–253 μ m), medium (425–250 μ m) and coarse (>425 μ m) soil particulate organic matter (POM ) were determined. Grain dry matter (DM ) and the amount of N in harvested grain were also quantified. Organic systems with varying use of manure and catch crops had lower spring barley grain DM yield compared to those in conventional systems, whereas barley/pea showed no differences. The largest benefits were observed for grain N yields and grain DM yields for spring barley, where grain N yield was positively correlated with root N. The inclusion of catch crops in organic rotations resulted in higher root N and SOC (g C/m2) in fine POM in soils under barley/pea. Our results suggest that manure application and inclusion of catch crops improve crop N supply and reduce the yield gap between conventional and organic rotations. The observed positive correlation between root N and grain N imply that management practices aimed at increasing grain N could also increase root N and thus enhance N supply for subsequent crops.  相似文献   

9.
为充分利用苏南冬闲稻田发展适宜绿肥作物种植,在大田试验条件下,研究了毛叶苕子(Vicia villosa Roth)、 光叶苕子(Vicia villosa var.)、 紫云英(Astragalus sinicus L.)和肥田萝卜(Raphanus sativus L.)4种绿肥作物的生长、 营养特性,比较分析了绿肥作物翻压前不同处理间耕层土壤无机氮含量与构成的差异。结果表明,在绿肥作物翻压期,4种绿肥作物均达到较高生物量和养分累积量,鲜重、 干重分别为24.8 30.7 t/hm2和3.6 4.2 t/hm2,不同绿肥作物间无显著差异。 4种绿肥作物的吸氮量为69.8 136.4 kg/hm2,毛叶苕子最高,肥田萝卜最低。吸磷量为7.1~11.3 kg/hm2,肥田萝卜最高,紫云英最低。吸钾量为117.6~151.3 kg/hm2,毛叶苕子最高,光叶苕子最低。与对照冬闲相比,种植绿肥作物不同程度地降低了耕层土壤无机氮含量(平均降低38.9 kg/hm2),其中硝态氮含量下降明显,铵态氮含量均较对照土壤有增加趋势(平均提高6.5 kg/hm2),毛叶苕子和光叶苕子处理铵态氮含量增加显著。4种绿肥作物均适合苏南冬闲稻田种植,能潜在降低无机氮的损失风险和为后季水稻作物生长提供养分。  相似文献   

10.
Catch crops might reduce sulfate leaching and thereby increase the overall sulfur (S)‐use efficiency in crop rotations. At two experimental sites in Denmark (a sandy loam and a coarse sand), S uptake of catch‐crop species was measured. Furthermore, net release of S following incorporation of this material (S contents 0.13%–1.03%, C:S ratios of 40–329, and lignin contents of 1%–10.8%) was investigated in a pot experiment with spring barley in sandy soil. The catch crops showed huge differences in their ability to sequester S. The best catch crops (legumes on sandy loam), sequestered 10–12 kg S ha–1, and the poorest catch crops (ryegrass and sorrel on coarse sand) sequestered less than 3 kg S ha–1. The S‐mineralization rates were highest for crucifers (57%–85% of total S added) and lowest for legumes (up to 46% of total S added). Differences can partly be explained by the C:S ratio, whereas no significant relationship was found with the lignin content of the incorporated catch crops. Catch crops may help to avoid S deficiency and increase synchrony between plant demand and available soil S in a crop rotation. However, the release of S will not fulfil the need of S‐demanding crops and even for cereals, the mineralization will most often only make a contribution. In the case of legume catch crops, it is advisable to use a supplemental S source.  相似文献   

11.
The aim of this experiment was to investigate the growth and residual‐nitrogen (‐N) effects of different catch‐crop species on a low–N fertility coarse sandy soil. Six legumes (white clover [Trifolium repens L.], red clover [Trifolium pratense L.], Persian clover [Trifolium resupinatum L.], black medic [Medicago lupulina L.], kidney vetch [Anthyllis vulneraria L.], and lupin [Lupinus angustifolius L.]), four nonlegumes (ryegrass [Lolium perenne L.], chicory [Cichorium intybus L.], fodder radish [Raphanus sativus L.], and sorrel [Rumex Acetósa L.]), and one mixture (rye/hairy vetch [Secale cereale L./Vicia villosa L.]) were tested in a field experiment with three replicates in a randomized block design. Four reference treatments without catch crops and with N application (0, 40, 80, and 120 kg N ha–1) to a succeeding spring barley were included in the design. Due to their ability to fix N2, the legume catch crops had a significantly larger aboveground dry‐matter production and N content in the autumn than the nonlegumes. The autumn N uptake of the nonlegumes was 10–13 kg N ha–1 in shoots and approx. 9 kg ha–1 in the roots. The shoot N content of white clover, black medic, red clover, Persian clover, and kidney vetch was 55–67 kg ha–1, and the root N content in white clover and kidney vetch was approx. 25 kg ha–1. The legume catch crops, especially white and red clover, seemed to be valuable N sources for grain production on this soil type and their N fertilizer–replacement values in a following unfertilized spring barley corresponded to 120 and 103 kg N ha–1, respectively. The N fertilizer–replacement values exceeded the N content of shoots and roots.  相似文献   

12.
Abstract

Tillage systems may affect many soil properties, which in turn may alter the soil environment and consequently impact on root growth and distribution, and crop yield. In 1993, a long-term field experiment on sustainable crop rotation and ley farming systems was initiated on a Colombian acid-savanna oxisol to test the effects of grain legumes, green manures, intercrops and leys as possible components that could increase the stability of systems involving annual crops. In the present study, five agropastoral treatments (maize monoculture, maize-soybean rotation, maize-soybean green manure rotation, native savanna, maize-agropastoral rotation) under two tillage systems (no tillage and minimum tillage) were investigated. Lower bulk density and higher total porosity for all treatments and soil layers were found in no-tillage compared to the minimum tillage system. Between the two tillage systems, significantly higher maize grain yields (p<0.1) were obtained under no-tillage agropastoral treatments compared to the same treatments under minimum tillage. Maize yields on native savanna soils were markedly lower than in the rest of the treatments, indicating the need for improved soil conditions in subsoil layers for root growth of maize.  相似文献   

13.
A field experiment with separately tile-drained plots was used to study the ability of oilseed radish (Rhaphanus sativus L.), as a cover crop sown after harvest of a main crop of cereals or peas, to reduce nitrogen (N) and phosphorus (P) leaching losses from a clay loam in southern Sweden over 6 years. In addition to oilseed radish in pure stand, two cover crop mixtures (hairy vetch (Vicia villosa) and rye (Secale cereale) for 3 years and oilseed radish in mixture with buckwheat (Fagopyrum esculentum) for 2 years) were tested. The cover crop plots (three replicates per treatment) were compared with unplanted plots as a control. Plots cropped with oilseed radish during autumn (August–November) had significantly smaller yearly mean N concentration in drainage water over 5 of 6 years compared with unplanted controls. Mineral N content in the soil profile in autumn was significantly less in oilseed radish plots than for control plots in all years. The cover crop mixtures of hairy vetch and rye or buckwheat and oilseed radish also showed the potential to reduce soil mineral N in autumn and N concentration in drainage water, compared with unplanted controls. The cover crops had no impact on P leaching. In conclusion, oilseed radish has the ability to reduce leaching losses of N, without increasing the risk of P leaching.  相似文献   

14.
Field experiments were conducted on rainfed wheat and mungbean for two consecutive seasons on a Udic Ustocrept to evaluate the effect of tillage techniques, fertilization, and weeding on crop yields and nutrient uptake. Tillage techniques were conventional, zero, and deep tillage. Fertilizer treatments consisted of a control, nitrogen (N) and phosphorus (P) fertilizer, and farmyard manure plus fertilizer. Grain yield of wheat (Triticum aestivum L.) was 2,404 kg/ha under conventional tillage, 2,008 kg/ha under zero tillage, and 2,839 kg/ha under deep tillage. Total dry matter of wheat was 7,612 kg/ha under deep tillage, 6,671 kg/ha under conventional tillage, and 6,016 kg/ha under zero tillage. Fertilizer application increased wheat grain yield by 112% and total dry matter by 150% over the control. Weed biomass of wheat was 57% greater under zero tillage than under conventional tillage. Mungbean (Vigna radiata L.) grain yield was 371 kg/ha under conventional tillage, 248 kg/ha under zero tillage, and 367 kg/ha under deep tillage. Mungbean total dry matter yield was 2,018 kg/ha under deep tillage, 1,814 kg/ha under conventional, and 1,143 kg/ha under zero tillage. Dry weed biomass in mungbean was 38% greater under zero tillage and 6% lesser under deep tillage than that of conventional tillage. Nitrogen and P uptake by weeds was greater under zero tillage compared with conventional and deep tillage.  相似文献   

15.
In Northern Europe, cover crops are traditionally established before spring crops by undersowing, but some cover crops might also have an effect if preharvest sown before spring crops and even winter crops. The effects of cover crop sowing date, sowing technique and succeeding main crop on biomass production, N uptake, nitrate leaching and soil inorganic N were tested in lysimeters and in the field. Cruciferous cover crops (oil radish, white mustard) were sown preharvest by broadcasting into winter wheat in July and were allowed to grow until a following winter wheat was established in September. Other preharvest cover crops were left in place until late autumn. For comparison, the same cruciferous cover crops were established postharvest after light harrowing. Perennial ryegrass undersown in spring barley was also included. Aboveground N uptake in preharvest cover crops amounted to a maximum of 24 kg N/ha in September before sowing winter wheat. When left until late autumn, preharvest oil radish took up a maximum of 66 kg N/ha, and ryegrass and postharvest cover crops 35 kg N/ha. Preharvest establishment of cruciferous cover crops before a spring‐sown crop thus seems promising. The soil was depleted of inorganic N to the same extent in late autumn irrespective of cover crop type, sowing time and technique within winter wheat or spring barley. However, the reduction in nitrate leaching of preharvest cover crops incorporated after 2 months and followed by winter wheat was only half of that achieved by cover crops left until late autumn or spring.  相似文献   

16.
An accurate estimation of nitrous oxide (N2O) emission from 110 million ha of upland in China is essential for the adoption of effective mitigation strategies. In this study, the effects of different tillage practices combined with nitrogen (N) fertilizer applications on N2O emission in soils were considered for a winter wheat (Triticum aestivum L.) – summer maize (Zea mays L.) double cropping system. Treatments included conventional tillage plus urea in split application (CTF1), conventional tillage with urea in a single application (CTF2), no‐tillage with straw retained plus reduced urea in a split application (NTSF1) and no‐tillage with manure plus reduced urea in a split application (NTMF1). The amounts of N input in each treatment were 285 and 225 kg N/ha for wheat and maize, respectively. Both NTSF1 and NTMF1 were found to reduce chemical N fertilizer rates by 33.3% (wheat) and 20% (maize), respectively, compared to CTF1 and CTF2. N2O emissions varied between 3.2 (NTSF1) and 9.9 (CTF2) kg N2O‐N/ha during the wheat season and between 7.6 (NTFS1) and 14.0 (NTMF1) kg N2O‐N/ha during the maize season. The yield‐based emission factors ranged from 21.9 (NTSF1) to 60.9 (CTF2) g N2O‐N/kg N for wheat and 92.5 (NTSF1) to 157.4 (NTMF1) g N2O‐N/kg N for maize. No significant effect of the treatments on crop yield was found. In addition to reducing production costs involved in land preparation, NTSF1 was shown to decrease chemical fertilizer input and mitigate N2O emissions while sustaining crop yield.  相似文献   

17.
This model analysis of catch crop effects on nitrate retention covered three soil texture classes (sand, loamy sand, sandy loam) and three precipitation regimes in a temperate climate representative of northern Europe (annual precipitation 709–1026 mm) for a period of 43 years. Simulations were made with two catch crops (ryegrass and Brassica) with different rooting depths, and soil N effects in the next spring were analysed to 0.25, 0.75 and 2.0 m depth to represent the catch crop effect on following crops with different rooting depths. Nitrate retained without a catch crop was generally located in deeper soil layers. In the low precipitation regime the overall fraction of nitrate retained in the 0–2.0 m soil profile was 0.23 for the sandy soil, 0.69 for the loamy sand and 0.81 for the sandy loam. Ryegrass reduced leaching losses much less efficiently than Brassica, which depleted nitrate in the 0–0.75 m soil layer more completely, but also in the deeper soil layer, which the ryegrass could not reach. A positive N effect (Neff, spring mineral N availability after catch crop compared with bare soil) was found in the 0–0.25 m layer (that is shallow rooting depth of a subsequent main crop) in all three soil texture classes, with on average 10 kg N/ha for ryegrass and 34 kg N/ha for Brassica. Considering the whole soil profile (0–2.0 m deep rooting of next crop), a positive Neff was found in the sand whereas generally a negative Neff was found in the loamy sand and especially the sandy loam. The simulations showed that for shallow‐rooted crops, catch crop Neff values were always positive, whereas Neff for deeper‐rooted crops depended strongly on soil type and annual variations in precipitations. These results are crucial both for farmers crop rotation planning and for design of appropriate catch crop strategies with the aim of protecting the aquatic environment.  相似文献   

18.
Cover crops are capable of providing multiple benefits for improving soil quality and enhancing annual crop growth. Maintaining continuous plant cover on agricultural fields with cover crop is of great interest to improve nutrient cycling, prevent soil degradation, and promote further adoption of no-till farming systems. A field study was conducted in eastern South Dakota, USA, in 2007, 2008, and 2009 to evaluate four cover crop combinations [(1) no cover; (2) buckwheat (BUCK) (Fagopyrum esculentum Moench) + slender wheatgrass (Agropyron caninum L.) (SLD WHT); (3) oilseed radish (Raphanus sativus L.) (RAD) + SLD WHT; and (4) purple top turnips (Brassica rapa L.) (TURN + SLD WHT)] sown after oat (Avena sativa L.) on soybean [Glycine max (L.) Merr.] performance. The impacts of no tillage (NT) and conventional tillage (CT) were evaluated at two different planting populations. Soybean plant biomass, seed harvest index, yield, total nitrogen (N), oil concentration, and test weight were measured. Cover crops preceding soybean did not negatively impact most measured plant parameters. Seed yield was increased by the RAD + SLD WHT and TURN + SLD WHT in 2008, whereas in 2007 and 2009 no yield increase or slight yield decrease was shown by the cover crops. Soil tillage practice and planting population had a strong influence on seed yield and seed quality in all three study years.  相似文献   

19.
We studied fodder radish carbon turnover as affected by soil tillage in Foulum, Denmark. Actively growing fodder radish monoliths from direct‐drilled (DD) and conventionally tilled (CT) plots were extracted and labelled regularly with 14C isotope across their entire growth period. At the end of the fodder radish growth cycle, labelled biomass was harvested and incorporated into the same monolith. These monoliths were destructively sampled at biomass incorporation, 4, 8 and 18 months after incorporation. For each sampling period, soil and root samples were taken at 0‐ to 10‐, 10‐ to 25‐, and 25‐ to 45‐cm‐depth increments for determination of 14C distribution and retention. Carbon‐14 declined significantly with increasing soil depth at each sampling for the two tillage practices (< 0.05). We further observed significantly higher 14C at 0–10 cm for DD than for CT at 4 and 8 months after biomass incorporation. For the 10–25 cm depth, 14C was significantly higher for CT than for DD, 4 and 8 months after incorporation. However, despite these depth‐specific differences, cumulative (0–45 cm soil depth) 14C retention was similar for DD and CT treatments for all the sampling periods. On the basis of a CN‐SIM model forecast, we estimated that over a 30‐yr period of continuous autumn fodder radish establishment, at least 4.9 t C/ha fodder radish C with a residence time of more than 20 yr could be stored in the soil.  相似文献   

20.
Nitrate leaching as influenced by soil tillage and catch crop   总被引:1,自引:0,他引:1  
Because of public and political concern for the quality of surface and ground water, leaching of nitrate is of special concern in many countries. To evaluate the effects of tillage and growth of a catch crop on nitrate leaching, two field trials were conducted in spring barley (Hordeum vulgare L.) under temperate coastal climate conditions. On a coarse sand (1987–1992), ploughing in autumn or in spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated. Furthermore, rotovating and direct drilling were included. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. On a sandy loam (1988–1992), ploughing in autumn or in spring in combination with stubble cultivation and perennial ryegrass, in addition to minimum tillage, was evaluated in a newly established field trial. For calculation of nitrate leaching, soil water isolates from depths of 0.8 or 1.0 m were taken using ceramic cups. No significant effect of tillage was found on the coarse sand; however, a significant effect of tillage was found on the sandy loam, where leaching from autumn ploughed plots without stubble cultivation was 16 kg N ha−1 year−1 higher than leaching from spring ploughed plots. Leaching was significantly less when stubble cultivation in autumn was omitted. Leaching on both soil types was significantly reduced by the growth of a catch crop which was ploughed under in autumn or in spring. It was concluded that soil cultivation increased leaching on the sandy loam but not on the coarse sand, and that the growth of perennial ryegrass as a catch crop reduced leaching on both soil types, particularly when ryegrass was ploughed under in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号