首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research primarily focuses on improving the strength of Al 5083 alloy by both the ECAP and Cryo ECAP methodology. Equal Channel Angular Pressing (ECAP) is one of the best technologies that enable the direct transformation of conventional macro grained metals into sub-micron, ultra-fine and nano grained materials. Fine grain size increases the strength and the fracture toughness of the material and provides the potential for super plastic deformation at moderate temperatures and at high strain rates. The microstructure evolution in Al 5083, subjected to Room Temperature ECAP and Cryo ECAP were analysed. ECAP was carried out using an optimized die with Channel angle ‘?’ = 90°and corner angle ‘Ψ’ = 20° through processing route A and C up to four passes. The results were thoroughly studied using TEM, SEM, and optical microscopic images. Initially the annealed sample had the grain size of 80 µm with the equi-axed grains. In Room Temperature, the hardness values and the mechanical strength were found to be increased from 88 to 410 HV and 306 to 453 MPa after four passes in route A and in route C the strength increased from 390 to 416 MPa after four ECAP passes. Moreover, in Cryo Condition, the sample was processed up to four ECAP passes at route A and route C. The hardness of 153 HV was obtained after four passes in route C and 164 HV obtained after four passes on route A. Additionally, fracture behaviour using SEM, grain size using TEM and crystallite size by X-ray diffraction studies were analyzed. It was observed that the Cryo ECAP showed marginal improvements in mechanical properties relative to the RT ECAP in case of Al 5083.  相似文献   

2.
The objective of this work is to fabricate functionally graded unreinforced copper alloy (Cu–10Sn) and a Cu–10Sn/SiC composite (Øout100 × Øin70 × 100 mm) by horizontal centrifugal casting process and to investigate its mechanical and tribological properties. The microstructure and hardness was analysed along the radial direction of the castings; tensile test was conducted at both inner and outer zones. Microstructural evaluation of composite indicated that the reinforcement particles formed a gradient structure across the radial direction and maximum reinforcement concentration was found at the inner periphery. Hence maximum hardness (205 HV) was observed at this surface. Tensile test results showed that, the tensile strength at inner zone of composite was observed to be higher (248 MPa) compared to that of the outer zone and unreinforced alloy. As mechanical properties showed better results at inner periphery, dry sliding wear experiments were carried out on the inner periphery of composite using pin-on-disc tribometer. Process parameters such as load (10–30 N), sliding distance (500–1500 m) and sliding velocity (1–3 m/s) were analyzed by Taguchi L27 orthogonal array. The influence of parameters on wear rate was analyzed by signal-to-noise ratio and analysis of variance. Analysis results revealed that load (54%) had the highest effect on wear rate followed by sliding distance (18.2%) and sliding velocity (3.7%). The wear rate of composite increased with load and sliding distance, but decreased with sliding velocity. Regression equation was developed and was validated by confirmatory experiment. Worn surface of composite was observed using scanning electron microscopy and transition of wear was observed at all extreme conditions.  相似文献   

3.
In the present study, magnesium and magnesium matrix composites reinforced with 10, 20 and 30 wt% B4C particulates were fabricated by powder metallurgy using hot pressing technique. The microstructure, mechanical properties and wear behaviour of the samples were investigated. Microstructure characterization showed generally uniform distribution of B4C particulates. XRD investigations revealed the presence of Mg, B4C and MgO phases. The mechanical properties of the investigated samples were determined by hardness and compression tests. Hardness and compressive yield strength significantly increased with increasing B4C content. The reciprocating wear tests was applied under loads of 5, 10 and 20 N. Wear volume losses decreased with increasing B4C content. Abrasive and oxidative wear mechanisms were observed.  相似文献   

4.
This work describes the tribological properties of mono AA6061-10 wt% B4C and hybrid AA6061-10 wt% B4C-7.5 wt% Gr composites which could be used as a potential substitute for aluminum alloys used in automotive engines. The tribological experiments are performed as per the experimental scheme designed using full factorial design. The results suggest that the wear loss increases with applied load and sliding distance and the friction coefficient increases with increase in applied load. Further, the ANOVA analysis reveals the statistically and physically significant factors which influence the wear loss and friction coefficient. Formation of Gr-rich tribolayer causes reduction in the wear loss and friction coefficient for hybrid composites compared to the mono ones.  相似文献   

5.
Equal channel angular pressing (ECAP) has been widely shown to be able to produce ultrafine grained microstructures in a variety of metals and alloys. In this study, the ECAP process has been used as an intermediate processing step prior to cold rolling to achieve superior mechanical properties. Commercial purity (CP) titanium was processed by ECAP at 400 °C and subsequently the ECAPed specimens were subjected to a post deformation process by conventional cold rolling. Microstructure and mechanical property characterization of CP titanium billets subjected to ECAP alone and ECAP plus cold rolling were carried out. 98 % reduction in thickness (from 15 to 0.2 mm thickness) was possible by cold rolling. Post-deformation by cold rolling significantly increased the strength of CP titanium while retaining considerable ductility. TEM images after ECAP show deformation induced dislocation networks and the disintegration of the initial coarse grained microstructure giving rise to lamellar structures 0.3–0.5 μm in width.  相似文献   

6.
Dry sliding wear tests were performed for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy against AISI 52100 steel under the loads of 50 to 250 N at 298 K to 873 K (25 °C to 600 °C). The wear behavior of the alloy varied with the change of test conditions. More or less tribo-oxides TiOand Fe2O3 formed on worn surfaces under various conditions. At lower temperature [298 K to 473 K (25 °C to 200 °C)], less and scattered tribo-oxide layers did not show wear-reduced effect. As more number of and continuous tribo-oxide layers appeared at higher temperatures [773 K to 873 K (500 °C to 600 °C)], the wear rate would be substantially reduced. It can be suggested that Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy possessed excellent wear resistance at 773 K to 873 K (500 °C to 600 °C). The wear-reduced effect of tribo-oxides seemed to depend on the appearance of Fe2Oand the amount of tribo-oxides.  相似文献   

7.
Equal-channel angular pressing (ECAP) is used to refine grains and to change the texture of the initial pressed Mg-0.49% Al-0.47% Ca alloy rod in order to study the possibility of increasing the low-temperature ductility of the alloy. ECAP is performed at 300°C in six passes at a total true logarithmic strain ε = 6.8 according to route B C . As a result, an ultrafine-grained structure with a grain size of 2–5 μm forms. The initial texture of the pressed rod is characterized by the [12 11] axial orientation parallel to the pressing direction. After ECAP, the texture changes its type and is characterized by a set of preferred orientations that represent basal planes located at an angle of 40°–50° with respect to the pressing direction. An analysis of the generalized Schmid factors, which were calculated for the main operating deformation systems with allowance for the critical shear stresses in them and the volume fractions of the preferred orientations, indicates that the texture caused by ECAP affects the decrease in the strength properties of the alloy measured at room temperature and the increase in the low-temperature ductility of the alloy.  相似文献   

8.
Equal channel angular pressing (ECAP) is applied to investigate the microstructural evolution and mechanical properties of Cu-8 wt pct Ag alloy subjected to one to four passes via four different routes (A, BA, BC, and C). It is demonstrated that better mechanical properties, a higher fraction of high-angle boundaries, and a smaller grain size can be obtained most rapidly with route A, whereas the specimen processed by route BC contains relatively inhomogeneous microstructure and has poor mechanical properties. The ultimate tensile stress (UTS) of the Cu-Ag alloy processed by route BC saturates after four passes; in contrast, the UTS of the Cu-Ag alloy processed by route A increases continuously in relation to the number of ECAP passes. Based on the experimental results, the strengthening mechanisms of the Cu-8 wt pct Ag alloy processed by different routes as well as the efficiency of different routes in refining the binary alloy are discussed.  相似文献   

9.
Al 6060 alloy was coated with TiO2 by spray pyrolysis technique at 400 °C using Titanium isopropoxide as precursor. The adhesion of the coating with the alloy was enhanced by annealing at 450 °C for 1 h which increased the hardness by 50%. Dry sliding wear resistance was experimented based on Taguchi’s L27 array using pin-on-disc tribometer by varying parameters such as applied load (15, 25 and 35 N), sliding distance (500, 1000 and 1500 m) and sliding velocity (1.5, 2.5 and 3.5 m/s). Analysis of Variance predicted the major influence by load, followed by velocity and distance. Trend depicted an increase in wear rate with load and distance, whereas with velocity it decreased initially and then increased. Optimum condition for maximum wear resistance was determined from the Signal-to-Noise ratio. Experimental results were validated using regression equation with an error less than 3%. Scanning Electron Microscope analysis of the worn surfaces had revealed more defoilage and lay-off as the applied load was increased.  相似文献   

10.
《粉末冶金学》2013,56(4):374-379
Abstract

The wear behaviour of unreinforced and reinforced PM based iron metal matrix composite, the latter containing 10 and 20 vol.-% nano sized Fe3Al intermetallic particles, was studied as a function of sliding distance under two different loads and dry lubricated conditions. The intermetallic Fe3Al nanoparticles were prepared by mechanical alloying and used as particle reinforcement with 10 and 20 vol.-% in the matrix. The processing of the composites included mixing and cold compaction followed by sintering at 1120°C. The influence of Fe3Al additions on the dry sliding wear behaviour was studied at loads 20 and 40 N over sliding distances 2160, 3240, 4320 and 6480 m. The study showed that the composite exhibited a lower wear rate than that of the unreinforced matrix and the wear rate was influenced by the volume percentage of Fe3Al particles. It is understood that iron aluminide reinforcement has a beneficial effect on the wear properties. Delamination and microcutting were the chief mechanisms of wear for the composites.  相似文献   

11.
A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries (f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to ~ 40 and ~ 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches ~ 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.  相似文献   

12.
Since Ti alloys exhibit inferior wear resistance and suffer considerable loss in mechanical strength at high temperature, it is aimed at synthesis an in-situ Ti/(TiB + TiC) hybrid composite. In order to synthesis Ti/(TiB + TiC) in-situ composite, B4C particulate was mixed with titanium powder and sintered at 1400 °C at different time intervals by spark plasma sintering. Sintering parameters were optimized according to the complete in-situ reactions. Density of the sintered compacts was measured by Archimedes principle. Energy dispersive spectroscope and optical microscope observations of the sintered samples revealed that with increasing sintering time TiB and TiC particulates were gradually transforming into needle like structure and near equiaxed structure, respectively.  相似文献   

13.
The effects of nano particles on double shear strength and tribological properties of A356 alloy reinforced with Al2O3 nano particles of size 30 nm were investigated. The percentage inclusions of Al2O3 were varied from 0.5 to 1.5 wt%. The particles were added with stirring at 400 rpm and squeeze casting at 750 °C and pressure of 600 MPa in a squeeze casting machine. Comparison of the performance of as cast samples of A356/Al2O3 nano composite was conducted. The tribological properties of the samples were also investigated by pin-on-disk tests at 10, 30 and 50 N load, sliding speed 0.534 m/s and sliding distance 1100 m in dry condition. SEM images of microstructure analysis of the composite, Al2O3 (0.5 and 1 %) particles were well dispersed in the A356 alloy matrix. Partial agglomeration was observed in metal matrix composite with higher (1.5 %) Al2O3 particle contents. The nano dispersed composites containing 0.5 and 1 wt% of Al2O3 nano particles exhibited the highest double shear strength, lesser wear loss and coefficient of friction.  相似文献   

14.
Equal-channel angular pressing (ECAP) of am MA2-1 alloy according to routes A and Bc is used to study the possibility of increasing the low-temperature deformability of the alloy due to grain refinement and a change in its texture. To separate the grain refinement effect from the effect of texture on the deformability of the alloy, samples after ECAP are subjected to recrystallization annealing that provides grain growth to the grain size characteristic of the initial state (IS) of the alloy. Upon ECAP, the average grain size is found to decrease to 2–2.4 μm and the initial sharp axial texture changes substantially (it decomposes into several scattered orientations). The type of orientations and the degree of their scattering depend on the type of ECAP routes. The detected change in the texture is accompanied by an increase in the deformability parameters (normal plastic anisotropy coefficient R, strain-hardening exponent n, relative uniform elongation δu) determined upon tensile tests at 20°C for the states of the alloy formed in the IS-4A-4Bc and IS-4Ao-4BcO sequences. The experimental values of R agree with the values calculated in terms of the Taylor model of plastic deformation in the Bishop-Hill approximation using quantitative texture data in the form of orientation distribution function coefficients with allowance for the activation of prismatic slip, especially for ECAP routes 4Bc and 4BcO. When the simulation results, the Hall-Petch relation, and the generalized Schmid factors are taken into account, a correlation is detected between the deformability parameter, the Hall-Petch coefficient, and the ratio of the critical shear stresses on prismatic and basal planes.  相似文献   

15.
The results of investigations on varying the shape and fragmentation of aluminum powders of the PA-2 grade of 300–500 μm in size, briquette made of which was subjected to equichannel angular pressing (ECAP) at room temperature and 350°C. ECAP was performed by different routes up to five passages. The sample structure was studied by metallographic method in the longitudinal and transverse sections. It is established that ECAP at room temperature, including fivefold pressing (ɛ > 5.5), no deformation fragmentation occur. In the case of hot ECAP, density of samples after the fourth passage was close to the theoretical one. The structure of the material obtained by routes B C and A consists of fine grains, while after the ECAP by route C it has the duplex nature and includes both fine and coarse grains.  相似文献   

16.
Aluminum 2014 alloy composite reinforced with TiB2 particulates with different volume% of TiB2 (5, 10 and 15%) has been successfully synthesized by P/M route. The composite powders were consolidated by cold uniaxial compaction pressure followed by sintering at 590 °C in N2 atmosphere. The Al 2014–TiB2 composites were aged at 160 °C between 0 and 8 h followed by microstructural characterization and hardness evaluation. Scheil cooling and equilibrium calculations were performed using FactSage for qualitative understanding of the microstructural evolution during sintering and aging operations. In addition, the thermo-physical properties such as hardness, density and transverse rupture strength of the sintered samples were evaluated.  相似文献   

17.
Pr_(83)Cu_(17)(wt%) grain boundary reconstruction was applied to prepare sintered NdFeB magnets. The effects of addition amount and annealing on the bending strength were investigated. The results show that Pr_(83)Cu_(17) can not only effectively enhance the bending strength, but also change the mechanical anisotropy in two directions parallel and perpendicular to c-axis. The bending strength perpendicular to c-axis reaches 404 MPa in 10 wt% addition magnet, higher than 348 MPa along parallel direction. This change is attributed to the preferred distribution of boundary phases, i.e., ductile(Nd,Pr)-Fe-Cu phase along perpendicular direction to c-axis and(Nd,Pr)-Fe phase along parallel direction. Moreover, the Cu migration during 480 ℃ annealing is found to be related to this boundary phase distribution.  相似文献   

18.
19.
In high temperature hot forming processes (forging), the tool surfaces are the privileged places for mechanical, thermal and physico-chemical solicitations. More precisely, friction and wear play an important part in tool surface damage. The tool steel grades exhibit damages such as oxidation. Moreover oxide scales formed had a significant effect in failure forging tools on wear mechanisms and have to be considered in the wear model development. The damage caused by oxidation is very different according to the nature and the physical properties of formed oxide layers in the contact surfaces. The objective of the present work is to give an outline of the effects of the nature and the morphology of supplied X40CrMoV5-1 steel (AISI H13) oxides particles before slow sliding onto rubbing brass–steel surfaces on friction transition and wear mechanisms. It is the first to show the effects of thin flats plates having different micrometric size supplied before friction. In order to improve and to have a better insight into the wear phenomena taking place during the first instants of sliding, this work conducted has also demonstrated the role of this third body introduced before friction on the development and establishment of tribological circuit on the rubbing surface. In this paper, the wear investigations are carried out using a pad-on-disc tribometer. The pad-on-disc sliding wear experiments were performed at a load of 500 N and a sliding velocity of 0.065 mm/s in normal atmosphere. The pad is made of brass and the disc is made of cast iron lamellar. Static oxidation test used to evaluate samples oxidation characteristics consisted of one cycle of 70 h at 600 °C. In brief examination of rubbed pad surfaces after friction was conducted using scanning electron microscopy (SEM) to identify the wear mechanisms under oxidation surface. In addition, the samples structure and properties were examined by optical microscopy and SEM, profilometrical measurements and X-ray diffraction. Tribological results, correlated with microscopic observations, are conducted to establish a phenomenological model of wear mechanisms describing the evolution of the third body in contact. The effect of planning flats plates of third body on friction evolution was also discussed.  相似文献   

20.
The effects of alloying elements on the thermal stability, glass-forming ability (GFA), corrosion resistance, and magnetic and mechanical properties of a soft magnetic Fe75P10C10B5 metallic glass with a low glass transition temperature (T g) of 723 K (450°C) were investigated. The addition of Mo, Ni, and Co significantly increased the stabilization of supercooled liquid, GFA, and corrosion resistance in the H2SO4 solution. The maximum critical diameter (d c) of 4 mm for glass formation was obtained for the Fe55Co10Ni5Mo5P10C10B5 alloy, which shows the largest supercooled liquid region (ΔT x ) of 89 K (89 °C). The substitution of Cr for Mo further enhanced the corrosion resistance of the Fe55Co10Ni5Mo5P10C10B5, while the ΔT x and d c decreased. The (Fe, Ni, Co)70(Mo, Cr)5P10C10B5 bulk metallic glasses showed low T g of 711 K to 735 K (438 °C to 462 °C), wide ΔT x of 67 K to 89 K, high saturation magnetization of 0.79 to 0.93 T, low coercive force of 2.36 to 6.61 A m?1, high compressive yield strength of 3271 to 3370 MPa, and plastic strain of 0.8 to 2.3 pct. In addition, the mechanism for enhancing stability of supercooled liquid was discussed in terms of the precipitated phases during crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号