首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 207 毫秒
1.
系统地研究了活性碳纤维的KOH活化法与水蒸气活化法,比较了两种活化方法的活化条件,测量了比表面积,用碘值、苯值测定了活性碳纤维的吸附性能、脱附性能,用循环吸附、脱附方法研究了活性碳纤维的再生能力,并与颗粒状活性碳进行了比较.结果显示KOH活化的活性碳纤维无论从比表面积、微孔结构,还是在吸附、脱附性能上,都优于水蒸汽活化的活性碳纤维.  相似文献   

2.
系统地研究了活性碳纤维的KOH活化法与水蒸气活化法。比较了两种活化方法的活化条件。测量了比表面积,用碘值、苯值测定了活性碳纤维的吸附性能、脱附性能,用循环吸附、脱附方法研究了活性碳纤维的再生能力,并与颗粒状活性碳进行了比较,结果显示KOH活化的活性碳纤维无论从比表面积、微孔结构,还是在吸附、脱附性能上,都优于水蒸汽活化的活性碳纤维.  相似文献   

3.
以人发和蔗糖为炭源,通过水热碳化法和相继的KOH活化法,成功制备了N,S双掺杂活性炭.通过SEM、氮气吸附和XPS对所制备的碳材料的形貌、结构和表面性质进行了详细的表征.在6mol·L-1 KOH电解液中,对所制备的碳材料的电化学电容性能进行了测试.由于N、O、S等多种类的元素掺杂所表现出来的协同效应,所制备的碳材料表现出较大的赝电容,在6mol·L-1KOH电解液中的比电容值可以达到174.5F·g-1.实验利用可再生生物质,成功制备出了多种杂原子掺杂的碳材料,该碳材料拥有高比表面积和优异的电化学性能.  相似文献   

4.
以KOH为活化剂、氧化交联淀粉为原料制备了超级电容器用电极材料.最佳工艺条件是:活化温度850℃,活化保温1.5 h,碱炭质量比为2∶1.在该条件下制备的淀粉活性炭具有较高的比表面积(1 493.9 m2/g)和高比容量(218 F/g).通过氮吸附表征其孔结构.以其作为电极材料组装在模拟超级电容器中进行充放电性能和循环伏安法测试,在300 mg/g KOH水系电解质溶液、较高电流密度下,最佳制备工艺条件下所制备的活性炭表现出较好的电容特性.  相似文献   

5.
以KOH和ZnCl_2为活化剂,高粱酒酒糟为碳源,采用一步法制备了酒糟基活性炭。通过扫描电镜、X射线衍射、氮气吸附对制备的活性炭进行了表征,并考查了两种不同活性炭对亚甲基蓝的吸附性能。结果表明不同活化剂活化制备的活性炭主要以无定形碳为主,石墨化程度较低;KOH活化的活性炭具有很高的比表面积,表面疏松多孔,其对水溶液中亚甲基蓝的吸附量可达2139.09 mg/g;相比而言,ZnCl_2活化的活性炭表面孔结构较少,比表面积较低,对亚甲基蓝的吸附量仅为KOH活化的活性炭的12%。然而,KOH对活性炭表面更加严重的刻蚀导致了更低的活性炭产率。因此,针对高粱酒酒糟基活性炭制备采用KOH活化,需要优化其工艺,提高活性炭的产率;用ZnCl_2活化应更加关注活性炭孔结构的构建,增加活性炭的比表面积。  相似文献   

6.
通过改变间苯二酚、甲醛和碳酸钠的配比,实现对碳气凝胶材料孔结构的控制.通过改变CO_2活化的温度,研究活化温度对碳气凝胶孔结构和电化学性能的影响.利用氮气吸脱附实验(BET)和扫描电子显微镜(SEM)对材料的孔结构和表面形貌进行表征分析,运用循环伏安法(CV)、恒流充放电等技术对材料的电化学性能进行测定.结果表明:提高CO_2活化温度有利于改善材料的结构和性能,当CO_2活化的最高温度为1 000℃时,碳气凝胶具有最高比表面积(2 201m~2/g);在6mol/L的KOH溶液中,当电流密度为1A/g时,相应的比电容可达190F/g.  相似文献   

7.
研究不同固体材料对烟丝热解所释放烟气的吸附性能,以及在低温加热条件下再释放烟气组分的性能,确定对烟丝热解烟气的最佳吸附方式及再释放条件,为加热不燃烧卷烟的开发提供研究基础。结果表明,Al2O3、ZSM-5和MCM-41分子筛这3种典型的固体材料对烟丝热解烟气的吸附性能与其比表面积和表面性质有关,其中Al2O3吸附烟丝热解烟气后,在加热过程中释放出的香味成分相对含量最高,而有害物质的相对含量最少,表现出最佳的性能。另外,烟丝热解气氛也影响固体材料的吸附和再释放烟气组分的性能。与含氧的热解气氛相比,N2为较佳的烟丝热解气氛,Al2O3上释放出的香味成分相对含量较高。在此基础上,通过固体材料分层吸附,可进一步显著提高加热过程中释放出的香味成分的相对含量,同时减少有害物质的相对含量。  相似文献   

8.
讨论了用聚丙烯腈(PAN)基中空纤维为原料,采用KOH活化法制备中空活性炭纤维(ACHF)的活化过程。考察不同KOH质量浓度对中空活性炭纤维性能的影响。测量了比表面积和得率,孔径分布,用碘吸附值、亚甲基兰吸附值测定了中空活性炭纤维的吸附性能,用SEM观察了其表面结构。结果显示,KOH活化法得到的中空活性炭纤维具有窄的孔径分布,较大的比表面积和较高的得率。  相似文献   

9.
以石油焦基活性炭为主要原料,分别采用KOH和NaOH为活化剂进行二次活化,制备得到中孔活性炭。采用N2吸附、FT-IR、XPS等表征手段考察活性炭样品的比表面积、孔结构及表面化学性质,并利用实验室自制高压吸附装置测定样品在室温下的CO2吸附等温线。结果表明:经KOH、NaOH二次活化后样品均可产生一定数量中孔且其孔径分布变宽,样品单位比表面积的CO2吸附量均高于未处理样品。由KOH二次活化后样品吸附效果更佳,可达4.88μmol/m2.  相似文献   

10.
以聚丙烯腈(PAN)和N,N-二甲基甲酰胺(DMF)为原料,通过静电纺丝-CO2活化法制备PAN基活性碳纳米纤维,探讨活化温度对活性碳纳米纤维孔结构及孔径分布的影响,并研究了所制备的PAN基活性碳纳米纤维对亚甲基蓝(MB)的吸附性能.结果表明,随着活化温度的升高,PAN基活性碳纳米纤维的比表面积(SBET)、总孔容(Vtotal)和微孔容(Vmi)均增大,当活化温度达到950℃时,SBET、Vtotal、Vαmi、Vtmi和VDmi分别高达1 484.5 m2·g-1、0.709 cm3·g-1、0.680 cm3·g-1、0.666 cm3·g-1和0.659cm3·g-1;Langmuir模型较Freundlich模型更适合描述所制备的PAN基活性碳纳米纤维对MB的吸附过程,且ACF950在(25±1)℃对MB的饱和吸附量高达270 mg·g-1.  相似文献   

11.
KOH活化杨木制备活性炭的特性研究   总被引:1,自引:0,他引:1  
通过热重法对杨木颗粒以及用KOH浸渍后的杨木颗粒进行热解实验,通过TG、DTG、DSC曲线的变化规律,分析在主要失重阶段发生的物理变化、化学变化以及炭得率.结果表明:活化剂KOH中的K+对木材的热解具有催化作用,形成活性炭的温度基本为600,℃,温度高于800,℃时,活性炭发生烧失反应;升温速率对炭得率几乎没有影响;加入活化剂KOH后,提高了炭得率,但是炭得率与活化剂/杨木颗粒的质量比值成反比.  相似文献   

12.
具有较大比表面积的且以微孔孔隙居多的活性炭对气体小分子具有较好的吸附性能,以椰壳活性炭为原料、KOH/NaOH为活化扩孔剂,考察了温度、时间以及KOH与NaOH的质量比对活性炭孔隙结构的影响,使用N2在77 K下对产品活性炭进行表征测试。表征结果表明,当m(KHO)∶m(NaOH)为4∶1、溶液浓度为50%时,活性炭在600℃下活化4 h所得的活性炭产品平均孔径最大。对比HK模型和DFT模型对微孔活性炭孔径分布的分析结果,表明DFT模型更符合实际情况。经过孔结构改性的活性炭对CH4与CO2吸附能力均有提高。  相似文献   

13.
碱炭比对活性炭孔结构及电容特性的影响   总被引:2,自引:0,他引:2  
以酚醛树脂为原料、KOH为活化剂制备双电层电容器用高比表面积活性炭.考察KOH与酚醛树脂炭的质量比对所制得的活}生炭的吸附性能、孔径分布和比电容的影响.实验结果表明,随着碱炭比的增大,所得活性炭的BET比表面积、总孔容积和中孔容积不断增大,碘吸附值和亚甲基蓝吸附值也不断增大,比电容则先增大后减小并在碱炭比为4时达到最大值74.2F/g.以这种高比表面积活性炭组装成的电容器具有良好的充放电性能和循环性能,既能在大电流下快速充放电也能在小电流下缓慢充放电。  相似文献   

14.
以壳聚糖(CS)、水合肼等为原料,制备氨基化壳聚糖(AHCS).采用傅里叶红外光谱、X-射线衍射及热重分别对产物的化学结构、结晶性和热稳定性进行表征.将CS和AHCS作为添加剂分别添加到卷烟滤嘴中,研究其对卷烟主流烟气中有害成分的吸附作用.对卷烟烟气中有害成分及气粒相物进行测定,结果表明:含CS和AHCS的卷烟滤嘴的危害指数分别为7.41和7.11,与常规滤嘴相比分别下降7.84%和11.57%;添加AHCS滤嘴的苯酚释放量为6.92 μg·支-1,下降30.52%,其对苯酚具有选择性吸附.  相似文献   

15.
天然气是一种清洁能源,作为汽车代用燃料以及从天然气开采地到各用户单位之间的运输,都需要有效的存储技术.天然气水合物(NGH)能够降低甲烷存储的成本,而多孔材料孔内生成气体水合物能够有效提高储气密度,本研究目的是合成在孔内能够生成甲烷水合物的低成本高性能吸附剂.首先以农业废弃物玉米芯为原料,采用KOH活化法制备活性炭,其湿储甲烷最优合成条件为:在400,℃炭化30,min,碱炭质量比5∶1、850,℃活化1.0,h合成出C-8高性能活性炭,其孔容达到2.264,cm^3/g,比表面积为2 993,m^2/g,孔径分布主要集中在2~3,nm.合成的C-8是非常好的甲烷湿储吸附剂,在水炭比为3.68时在9.40,MPa下CH4达到最大吸附量为69.66%,是其干燥样品最大吸附量的3.25倍,并可以在较大压力范围内使存储的甲烷提供平稳的放气量,有望作为新型的甲烷水合物存储吸附剂应用于天然气汽车上.  相似文献   

16.
对云南红河烟叶单料烟的烟气甜香味成分进行了分析,利用凝胶渗透色谱(GPC)分离其烟气粒相物的水溶性组分,并对所得流分进行感官味觉评价,同时结合电子舌评价结果定位出甜香味特征流分,采用气相色谱-质谱法(GC/MS)定性甜香味流分中的化学成分.结果表明:特征流分中具有甜香味的成分主要为吡喃酮类、呋喃类、呋喃酮类和环戊烯酮类化合物.该研究方法可为剖析烟气中关键的甜香味成分和提高卷烟的感官舒适性提供一定的参考价值.  相似文献   

17.
以酒糟渣为原料,采用浓酸炭化法,KOH活化法制备了活性炭。考察了活化温度、活化时间、碱炭质量比以及酒糟渣/KOH质量比对活性炭的影响。采用SEM、BET、FT-IR、XRD对其物化性能进行了表征分析。结果表明:在活化温度为800℃、活化时间为3h、碱炭质量比为3:1、酒糟渣/KOH质量比为4:1时制备的活性炭性能最优。该酒糟渣活性炭吸附孔容为0.88248cm3/g,DFT比表面积为3654.9m3/g,碘吸附值为2216.3mg/g,亚甲基蓝吸附值为389.40mL/g。  相似文献   

18.
活化剂种类对活性炭结构及性能的影响   总被引:1,自引:0,他引:1  
以石油焦为前驱体,分别以KOH,NaOH,K2CO3和Na2CO3为活化剂通过化学活化制备活性炭,采用振实密度仪和全自动N2吸附仪研究活性剂对活性炭结构的影响,并以制备的活性炭为电极材料,l mol/LEt4NBF4/PC为电解液组装模拟电容器,采用LAND快速采样电池测试仪和电化学工作站考察不同活化剂对活性炭电化学性能的影响.研究结果表明:KOH具有最强的活化能力,其活化制备的活性炭具有较高的微孔含量和发达的孔隙结构,比表面积达2 362m2/g,孔容达到1.263 cm3/g,以其作电极材料,表现出良好的电容行为,质量比容量最高达到128.0 F/g,随着活化剂碱性的降低,活化能力大幅度降低,制备的活性炭比表面积和孔容急剧减小,K2CO3和Na2CO3不适合用作活化石油焦制备活性炭的活化剂.  相似文献   

19.
活性炭在过氧化氢氧化脱除二苯并噻吩中的催化作用   总被引:3,自引:0,他引:3  
研究了几种活性炭在过氧化氢氧化二苯并噻吩(DBT)中的催化性能、氧化脱除机理以及碳表面化学对催化性能的影响。考察了活性炭的吸附性能与催化性能以及两者之间的关系、DBT在活性炭上的动态反应活性以及水相pH对其吸附性能和催化性能的影响;并将一种木质活性炭经过3种表面处理,研究了活性炭的表面化学对其催化性能的影响。结果表明:活性炭在过氧化氢氧化DBT中具有较高的催化活性,正辛烷中的DBT转化率可达到81%以上;木质粉末活性炭对DBT的吸附性能优于果壳炭和煤质颗粒活性炭;吸附容量大的活性炭,其催化性能也好;DBT在催化性能高的活性炭作用下的动态反应活性也高;水相pH在低于2的条件下有利于DBT在活性炭上的吸附和催化氧化。DBT的氧化脱除强烈依赖于表面羰基量,是由于表面羰基能加速过氧化氢产生自由基。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号