首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
Quantized fault detection for sensor/actuator faults of networked control systems (NCSs) with time delays both in the sensor-to-controller channel and controller-to-actuator channel is concerned in this paper. A fault model is set up based on the possible cases of sensor/actuator faults. Then, the model predictive control is used to compensate the time delay. When the sensors and actuators are healthy, an H ∞ stability criterion of the state predictive observer is obtained in terms of linear matrix inequality. A new threshold computational method that conforms to the actual situation is proposed. Then, the thresholds of the false alarm rate (FAR) and miss detection rate (MDR) are presented by using our proposed method, which are also compared with the ones given in the existing literatures. Finally, some numerical simulations are shown to demonstrate the effectiveness of the proposed method.  相似文献   

2.
This paper considers the problem of reliable control for continuous-time systems with interval time-varying delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapunov-Krasovskii approach, a sufficient condition for the existence of reliable controller is expressed by a linear matrix inequality(LMI). An illustrative example is exploited to show the effectiveness of the proposed design procedures.  相似文献   

3.
具有传输时延的网络控制系统故障估计与调节   总被引:2,自引:1,他引:2  
冒泽慧  姜斌 《自动化学报》2007,33(7):738-743
In this paper, a method of fault estimation and fault tolerant control for networked control system (NCS) with transfer delay and process noise is presented. First, the networked control system is modeled as a multiple-input-multiple-output (MIMO) discrete-time system with transfer delays, process noise, and model uncertainties. Under this model and under some conditions, a fault estimation method is proposed to estimate the system faults. On the basis of the information on fault estimation and the sliding mode control theory, a fault tolerant controller is designed to recover the system performance. Finally, simulation results are used to verify the efficiency of the method.  相似文献   

4.
In this paper, an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints, which is a combination of a direct adaptive control algorithm with multiple model switching. The μ-modification is introduced in the model reference architecture to construct the adaptive controller. The proof of stability is based on the candidate Lyapunov function, while appropriate switching of multiple models guarantees asymptotic tracking of the system states and the boundedness of all signals. Simulation results illustrate the efficiency of the proposed method.  相似文献   

5.
Quantized H_∞ fault-tolerant control for networked control systems (NCSs) with partial actuator fault with respect to actuators is concerned in this paper. Considering transmission delay, packet dropout and quantization, a synthesis model with partial actuator fault is established. The piecewise constant controller is adopted to model NCS with the transmission delay and packet dropout. Due to data transmitted in practical NCSs should be quantized before they are sent to the next network node, the logarithmic static and time-invariant quantizers at the sensor and controller sides are proposed in the paper. For the established model, an appropriate type of Lyapunov functions is provided to investigate the delay-dependent H_∞ control problem. According to an optimal problem, the controller that makes the system achieve the best performance is designed. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed approach.  相似文献   

6.
The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties,disturbances and the occurrence of actuator faults are account for.The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability.According to the information from the adaptive mechanism,the updating control law is derived such that all the parameters of the unknown input signal are bounded.Furthermore,a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented.The advantage of fault compensation is that the dynamics caused by faults can be accommodated online.The proposed design method is illustrated on a rocket fairing structural-acoustic model.  相似文献   

7.
A New Approach to Robust and Fault Tolerant Control   总被引:4,自引:1,他引:4  
In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tolerant control design consists of two parts: a nominal performance controller and a robustness controller, and works in such a way that when a component (sensor, actuator, etc.) failure is detected, the controller structure is reconfigured by adding a robustness loop to compensate the fault. We shall illustrate how this strategy works under various situations.  相似文献   

8.
In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 adaptive fuzzy fault tolerant control scheme is proposed using sliding mode control. Two adaptive type-2 fuzzy logic systems are used to approximate the unknown functions, whose adaptation laws are deduced from the stability analysis. The proposed approach allows to ensure good tracking performance despite the presence of actuator failures and external disturbances, as illustrated through a simulation example.  相似文献   

9.
This paper investigates the active fault tolerant cooperative control problem for a team of wheeled mobile robots whose actuators are subjected to partial or severe faults during the team mission. The cooperative robots network only requires the interaction between local neighbors over the undirected graph and does not assume the existence of leaders in the network. We assume that the communication exists all the time during the mission. To avoid the system''s deterioration in the event of a fault, a set of extended Kalman filters (EKFs) are employed to monitor the actuators'' behavior for each robot. Then, based on the online information given by the EKFs, a reconfigurable sliding mode control is proposed to take an appropriate action to accommodate that fault. In this research study, two types of faults are considered. The first type is a partial actuator fault in which the faulty actuator responds to a partial of its control input, but still has the capability to continue the mission when the control law is reconfigured. In addition, the controllers of the remaining healthy robots are reconfigured simultaneously to move within the same capability of the faulty one. The second type is a severe actuator fault in which the faulty actuator is subjected to a large loss of its control input, and that lead the exclusion of that faulty robot from the team formation. Consequently, the remaining healthy robots update their reference trajectories and form a new formation shape to achieve the rest of the team mission.  相似文献   

10.
一类带有传感器故障的混合系统的容错控制   总被引:3,自引:1,他引:3  
杨浩  冒泽慧  姜斌 《自动化学报》2006,32(5):680-685
A model-based fault tolerant control approach for hybrid linear dynamic systems is proposed in this paper. The proposed method, taking advantage of reliable control, can maintain the performance of the faulty system during the time delay of fault detection and diagnosis (FDD) and fault accommodation (FA), which can be regarded as the first line of defence against sensor faults. Simulation results of a three-tank system with sensor fault are given to show the efficiency of the method.  相似文献   

11.
In this paper, a robust actuator‐fault‐tolerant control (FTC) system is proposed for thrust‐vectoring aircraft (TVA) control. To this end, a TVA model with actuator fault dynamics, disturbances, and uncertain aerodynamic parameters is described, and a local fault detection and identification (FDI) mechanism is proposed to locate and identify faults, which utilizes an adaptive sliding‐mode observer (SMO) to detect actuator faults and two SMOs to identify and estimate their parameters. Finally, a fault‐tolerant controller is designed to compensate for these actuator faults, disturbances, and uncertain aerodynamic parameters; the approach combines back‐stepping control with fault parameters and a high‐order SMO. Furthermore, the stability of the entire control system is validated, and simulation results are given to demonstrate the effectiveness and potential for this robust FTC system.  相似文献   

12.
为提高控制系统执行器故障实时诊断的准确率,该文提出一种基于多元时间序列分析的控制系统执行器在线故障诊断方法。首先分析了控制系统执行器故障机理,确定了表征执行器故障的关键信号;其次采用执行器历史数据,建立了时间卷积网络(TCN)在线预测模型,对执行器多通道信号进行在线预测;随后通过长短期记忆网络(LSTM)对多通道残差信号建立了故障分类模型;最后以燃气轮机控制系统执行器半物理试验平台中的电液执行器为例进行了多次重复试验验证。结果表明,基于TCN网络的在线预测模型相比传统循环神经网络(RNN)预测误差较小;基于LSTM网络的故障分类模型准确率较高;通过LSTM网络对多通道残差信号进行故障分类,比对原始故障数据分类故障准确率更高。  相似文献   

13.
针对一类包含有干扰的负荷频率控制系统,提出一种利用未知输入观测器(UIO,unknown inputobserver)对单区域负荷频率控制系统执行机构进行故障诊断的方法.首先通过构建单区域负荷频率控制系统模型,给出系统的动态方程;其次,通过对系统中的加性未知干扰项进行解耦,构造一个使残差对未知输入具有鲁棒性,而对故障敏感的全阶未知输入观测器,以达到对执行器故障诊断的目的.最后通过Matlab仿真验证了所设计方法的正确性和可行性.  相似文献   

14.
Previous works have considered the use of set invariance theory for fault detection and isolation in nonlinear Lure systems. This paper extends those results and proposes a new actuator fault-tolerant control approach. The fault-tolerant control scheme is designed based on linear parameter-varying (LPV) models of Lure systems. The actuator fault situation is diagnosed by an invariant set-based fault detection and isolation algorithm. Faults are compensated by adapting the controller gain based on estimates of the fault magnitude. Conditions for correct fault detection and isolation, and closed-loop stability are derived. The proposed fault-tolerant control scheme is compared with a linearised model approach and the performance of both, LPV-embedding and linearised, approaches are analysed for scalar and second-order systems. An example of a chaotic Chua circuit is also provided to illustrate the proposed fault-tolerant control scheme in higher-order systems.  相似文献   

15.
针对一类满足Lipschitz条件的多输入多输出非线性可逆系统执行器故障问题,提出了一种基于迭代学习观测器的逆系统内模故障调节方法。引入PD型迭代学习策略,设计了迭代学习故障诊断观测器,用于对执行器未知时变故障进行快速、准确估计。根据故障估计值,结合逆系统方法对逆模型进行补偿,使得补偿后的逆模型与非线性被控对象串联仍为伪线性系统;再结合内模控制实现了伪线性系统的容错控制。最后,通过仿真算例验证了该方案的有效性。  相似文献   

16.
针对推力矢量飞机(TVA)在超机动飞行中的舵面故障、执行器故障、参数摄动和外界干扰等问题,提出了一种鲁棒故障检测与辨识和指令滤波容错控制(RFDI–CFFTC)系统设计方法.首先针对TVA故障模型提出了一种基于多观测器的RFDI机制,通过引入自适应律和观测器来补偿参数摄动和外界干扰的影响,实现对舵面故障和执行器故障的准确检测与辨识,同时准确估计故障程度;然后在RFDI的基础上,设计了CFFTC容错控制律,实现包容舵面故障、执行器故障、参数摄动和外界干扰的TVA容错控制,同时改善了传统反步法中的“微分爆炸”问题;最后对RFDI–CFFTC系统的稳定性进行了证明.MATLAB/Simulink仿真验证了本文方法的有效性.  相似文献   

17.
王旭  沈艳霞  吴定会 《测控技术》2018,37(10):148-152
针对一类满足Lipschitz条件的仿射非线性系统,提出一种执行器故障重构与容错控制方法。通过非奇异变化矩阵对系统进行降阶,设计出滑模故障重构观测器,优化滑模策略,使滑模故障重构观测器渐进估计系统的状态,并给出稳定性分析。运用等价输出控制方法直接获取故障信息,实现执行器故障的检测与重构。设计出主动容错控制器,通过补偿控制,完成执行器故障的容错控制。最后通过数值仿真验证了方法的可行性与有效性。  相似文献   

18.
This study is concerned with the bumpless transfer problem for switched systems with partial actuator failures, in order to obtain smooth system performance output transition. Taking into account that the system requires a controller switching from current sub-controller to a fault-tolerant sub-controller after actuator fault. And bumpless transfer for control input cannot be traditionally designed when the actuator fault occurs, while performance smoothing can be considered and it is actually the ultimate goal of bumpless transfer. Specifically, the actuator fault model is firstly established and partial actuator fault is considered. Then, the system performance output signal is deemed as the main design variable of bumpless transfer, and closed-loop control systems both previous and after controller switching are constructed. Moreover, by using model matching thought and the adaptive sliding mode control technique, a bumpless transfer compensator design strategy is given to drive the performance output variable (after controller switching) to track the one of reference model. At last, simulation results of numeric and application examples demonstrate the effectiveness of the proposed bumpless transfer strategy.  相似文献   

19.
针对风能转换系统中执行器故障,论文提出了一种新型的主动容错控制策略.设计滑模故障观测器,实时动态采集执行器故障前后数据信息,对执行器故障进行重构,达到故障诊断的目的.通过补偿控制,保证了滑模控制器对风能转换系统的可靠控制输入,以达到对执行器故障主动容错的功能.仿真结果表明,滑模故障观测器模块能够实时精确地重构风能转换系统执行器故障,主动补偿容错控制器在不影响风能转换系统动态性能的情况下,仍能实现系统的最大风能的捕获.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号