首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1981-2010年气候变化对青藏高原实际蒸散的影响(英文)   总被引:1,自引:0,他引:1  
From 1981 to 2010,the effects of climate change on evapotranspiration of the alpine ecosystem and the regional difference of effects in the Tibetan Plateau(TP) were studied based on the Lund-Potsdam-Jena dynamic vegetation model and data from 80 meteorological stations.Changes in actual evapotranspiration(AET) and water balance in TP were analyzed.Over the last 30 years,climate change in TP was characterized by significantly increased temperature,slightly increased precipitation,and decreased potential evapotranspiration(PET),which was significant before 2000.AET exhibited increasing trends in most parts of TP.The difference between precipitation and AET decreased in the southeastern plateau and increased in the northwestern plateau.A decrease in atmospheric water demand will lead to a decreased trend in AET.However,AET in most regions increased because of increased precipitation.Increased precipitation was observed in 86% of the areas with increased AET,whereas decreased precipitation was observed in 73% of the areas with decreased AET.  相似文献   

2.
Maintenance of steady streamflow is a critical attribute of the continental river systems for safeguarding downstream ecosystems and agricultural production.Global climate change imposes a potential risk to water supply from the headwater by changing the magnitude and frequency of precipitation and evapotranspiration in the region.To determine if and to what extent the recent climate changes affected streamflow in major river systems,we examined the pattern of temporal variations in precipitation,temperature,evapotranspiration and changes in runoff discharge during 1958–2017 in the headwater region of the Yellow River in northeastern Tibetan Plateau.We identified 1989 as the turning point for a statistically significant 14% reduction in streamflow discharge(P 0.05) for the period 1989–2017 compared with 1958–1988,approximately coinciding with changes in the monthly distribution but not the interannual variations of precipitation,and detected a mismatch between precipitation and runoff after 2000.Both annual precipitation and runoff discharge displayed fourand eight-year cyclic patterns of changes for the period 1958–1988,and a six-year cyclic pattern of changes for the period 1989–2017,with two intensified two-year cyclic patterns in the changes of precipitation and a three-year cyclic pattern in the change of runoff further detected for the later period.Our results indicate that the temporal changes in runoff are not strictly consistent with the temporal variations of precipitation in the headwater region of Yellow River during the period 1958–2017.In particular,a full recovery in annual precipitation was not reflected in a full recovery in runoff toward the end of the study period.While a review of literature yielded no apparent evidence of raised evapotranspiration in the region due to recent warming,we draw attention to increased local retention of rainwater as a possible explanation of differential changes in precipitation and runoff.  相似文献   

3.
The Yarlung Zangbo River (YR) is the highest great river in the world, and its basin is one of the centers of human economic activity in Tibet. Using 10 meteorological stations over the YR basin in 1961–2005, the spatial and temporal characteristics of temperature and precipitation as well as potential evapotranspiration are analyzed. The results are as follows. (1) The annual and four seasonal mean air temperature shows statistically significant increasing trend, the tendency is more significant in winter and fall. The warming in Lhasa river basin is most significant. (2) The precipitation is decreasing from the 1960s to the 1980s and increasing since the 1980s. From 1961 to 2005, the annual and four seasonal mean precipitation is increasing but not statistically significant, especially in fall and spring. The increasing precipitation rates are more pronounced in Niyangqu and Palong Zangbo river basins, the closer to the upper YR is, the less precipitation increasing rate would be. (3) The annual and four seasonal mean potential evapotranspiration has decreased, especially after the 1980s, and most of it happens in winter and spring. The decreasing trend is most significant in the middle YR and Nianchu river basin. (4) Compared with the Mt. Qomolangma region, Tibetan Plateau, China and global average, the magnitudes of warming trend over the YR basin since the 1970s exceed those areas in the same period, and compared with the Tibetan Plateau, the magnitudes of precipitation increasing and potential evapotranspiration decreasing are larger, suggesting that the YR basin is one of the most sensitive areas to global warming.  相似文献   

4.
1956-2003年拉萨河流域径流变化趋势   总被引:4,自引:1,他引:3  
Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.  相似文献   

5.
Using the Integrated Biosphere Simulator, a dynamic vegetation model, this study initially simulated the net primary productivity(NPP) dynamics of China's potential vegetation in the past 55 years(1961–2015) and in the future 35 years(2016–2050). Then, taking the NPP of the potential vegetation in average climate conditions during 1986–2005 as the basis for evaluation, this study examined whether the potential vegetation adapts to climate change or not. Meanwhile, the degree of inadaptability was evaluated. Finally, the NPP vulnerability of the potential vegetation was evaluated by synthesizing the frequency and degrees of inadaptability to climate change. In the past 55 years, the NPP of desert ecosystems in the south of the Tianshan Mountains and grassland ecosystems in the north of China and in western Tibetan Plateau was prone to the effect of climate change. The NPP of most forest ecosystems was not prone to the influence of climate change. The low NPP vulnerability to climate change of the evergreen broad-leaved and coniferous forests was observed. Furthermore, the NPP of the desert ecosystems in the north of the Tianshan Mountains and grassland ecosystems in the central and eastern Tibetan Plateau also had low vulnerability to climate change. In the next 35 years, the NPP vulnerability to climate change would reduce the forest–steppe in the Songliao Plain, the deciduous broad-leaved forests in the warm temperate zone, and the alpine steppe in the central and western Tibetan Plateau. The NPP vulnerability would significantly increase of the temperate desert in the Junggar Basin and the alpine desert in the Kunlun Mountains. The NPP vulnerability of the subtropical evergreen broad-leaved forests would also increase. The area of the regions with increased vulnerability would account for 27.5% of China.  相似文献   

6.
Quantifying the contributions of climate change and human activities to ecosystem evapotranspiration(ET)and gross primary productivity(GPP)changes is important for adaptation assessment and sustainable development.Spatiotemporal patterns of ET and GPP were estimated from 2000 to 2014 over North China Plain(NCP)with a physical and remote sensing-based model.The contributions of climate change and human activities to ET and GPP trends were separated and quantified by the first difference de-trending method and multivariate regression.Results showed that annual ET and GPP increased weakly,with climate change and human activities contributing 0.188 mm yr~(–2) and 0.466 mm yr~(–2) to ET trend of 0.654 mm yr~(–2),and–1.321 g C m~(–2) yr~(–2) and 7.542 g C m~(–2) yr~(–2) to GPP trend of 6.221 g C m~(–2) yr~(–2),respectively.In cropland,the increasing trends mainly occurred in wheat growing stage;the contributions of climate change to wheat and maize were both negative.Precipitation and sunshine duration were the major climatic factors regulating ET and GPP trends.It is concluded that human activities are the main drivers to the long term tendencies of water consumption and gross primary productivity in the NCP.  相似文献   

7.
This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961–2006. We used monthly precipitation and temperature data from 160 stations in China for 1951–2006, which was collected by the National Climate Center. Through calculating and analyzing the correlation coefficient, significance test, polynomial trend fitting, composite analysis and abrupt change test, this paper studied the interdecadal change of winter snow over the Tibetan Plateau and its relationship to summer precipitation and temperature in China, and to tropospheric atmospheric temperature. This paper also studied general circulation and East Asian summer monsoon under the background of global warming.  相似文献   

8.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

9.
China's dryland region has serious wind erosion problem and is sensitive to climate change due to its fragile ecological condition. Wind erosion climatic erosivity is a measure of climatic factors influencing wind erosion, therefore, evaluation of its intensity and response to recent climate changes can contribute to the understanding of climate change effect on wind erosion risk. Using the FAO equation, GIS and statistical analysis tools, this study quantified the climatic erosivity, analyzed its spatiotemporal variations, and detected the trend and sensitivity to climate factors during 1961–2012. The results indicate that mean annual climatic erosivity was 2–166 at 292 stations and 237–471 at 6 stations, with the spatial distribution highly in accordance with wind speed(R2 = 0.94). The climatic erosivity varied greatly over time with the annual variation(CV) of 14.7%–108.9% and monthly variation(concentration degree) of 0.10–0.71 in the region. Meanwhile, annual erosivity showed a significant downward trend at an annual decreasing rate mostly above 1.0%. This significantly decreasing trend was mainly attributed to the obvious decline of wind speed during the period. The results suggest that the recent climate changes were highly possible to induce a decrease of wind erosion risk in China's dryland region.  相似文献   

10.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   

11.
This study uses two forms of the Palmer Drought Severity Index(PDSI), namely the PDSI_TH(potential evapotranspiration estimated-by the Thornthwaite equation) and the PDSI_PM(potential evapotranspiration estimated by the FAO Penman-Monteith equation), to characterize the meteorological drought trends during 1960–2016 in the Loess Plateau(LP) and its four subregions. By designing a series of numerical experiments, we mainly investigated various climatic factors' contributions to the drought trends at annual, summer, and autumn time scales. Overall, the drying trend in the PDSI_TH is much larger than that in the PDSI_PM. The former is more sensitive to air temperature than precipitation, while the latter is the most sensitive to precipitation among all meteorological factors. Increasing temperature results in a decreasing trend(drying) in the PDSI_TH, which is further aggravated by decreasing precipitation, jointly leading to a relatively severe drying trend. For the PDSI_PM that considers more comprehensive climatic factors, the drying trend is partly counteracted by the declining wind speed and solar radiation. Therefore, the PDSI_PM ultimately shows a much smaller drying trend in the past decades.  相似文献   

12.
Under the impacts of climate change and human activities, great uncertainties still exist in the response of climate extremes, especially in Central Asia(CA). In this study, we investigated spatial-temporal variation trends and abrupt changes in 17 indices of climate extremes, based on daily climate observations from 55 meteorological stations in CA during 1957–2005. We also speculated as to which atmospheric circulation factors had the greatest impacts on climate extremes. Our results indicated that the annual mean temperature(Tav), mean maximum and minimum temperature significantly increased at a rate of 0.32℃/10 a, 0.24℃/10 a and 0.41℃/10 a, respectively, which was far higher than the increasing rates either globally or across the Northern Hemisphere. Other temperature extremes showed widespread significant warming trends, especially for those indices derived from daily minimum temperature. All temperature extremes exhibited spatially widespread rising trends. Compared to temperature changes, precipitation extremes showed higher spatial and temporal variabilities. The annual total precipitation significantly increased at a rate of 4.76 mm/10 a, and all precipitation extremes showed rising trends except for annual maximum consecutive dry days(CDD), which significantly decreased at a rate of –3.17 days/10 a. On the whole, precipitation extremes experienced slight wetter trends in the Tianshan Mountains, Kazakhskiy Melkosopochnik(Hill), the Kyzylkum Desert and most of Xinjiang. The results of Cumulative Deviation showed that Tav and Txav had a significant abrupt change around 1987, and all precipitation indices experienced abrupt changes in 1986. Spearman's correlation analysis pointed to Siberian High and Tibetan Plateau Index_B as possibly being the most important atmospheric circulation factors affecting climate extremes in CA. A full quantitative understanding of these changes is crucial for the management and mitigation of natural hazards in this region.  相似文献   

13.
青藏高原植被覆盖变化与降水关系   总被引:15,自引:6,他引:9  
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

14.
The distribution of winter-spring snow cover over the Tibetan Plateau(TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley(MLYRV) during 2003–2013 have been investigated with the moderate-resolution imaging spectrometer(MODIS) Terra data(MOD10A2) and precipitation observations. Results show that snow cover percentage(SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency(SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003–2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. The multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning, development and cessation of the rain belt in eastern China.  相似文献   

15.
Aridity index reflects the exchanges of energy and water between the land surface and the atmosphere, and its variation can be used to forecast drought and flood patterns, which makes it of great significance for agricultural production. The ratio of potential evapotranspiration and precipitation is applied to analyse the spatial and temporal distributions of the aridity index in the Belt and Road region under the 1.5℃ and 2.0℃ global warming scenarios on the basis of outputs from four downscaled global climate models. The results show that:(1) Under the 1.5℃ warming scenario, the area-averaged aridity index will be similar to that in 1986–2005(around 1.58), but the changes vary spatially. The aridity index will increase by more than 5% in Central-Eastern Europe, north of West Asia, the monsoon region of East Asia and northwest of Southeast Asia, while it is projected to decrease obviously in the southeast of West Asia. Regarding the seasonal scale, spring and winter will be more arid in South Asia, and the monsoon region of East Asia will be slightly drier in summer compared with the reference period. While, West Asia will be wetter in all seasons, except winter.(2) Relative to 1986–2005, both areal averaged annual potential evapotranspiration and precipitation are projected to increase, and the spatial variation of aridity index will become more obvious as well at the 2.0℃ warming level. Although the aridity index over the entire region will be maintained at approximately 1.57 as that in 1.5℃, the index in Central-Eastern Europe, north of West Asia and Central Asia will grow rapidly at a rate of more than 20%, while that in West Siberia, northwest of China, the southern part of South Asia and West Asia will show a declining trend. At the seasonal scale, the increase of the aridity index in Central-Eastern Europe, Central Asia, West Asia, South Asia and the northern part of Siberia in winter will be obvious, and the monsoon region in East Asia will be drier in both summer and autumn.(3) Under the scenario of an additional 0.5℃ increase in global temperature from 1.5℃ to 2.0℃, the aridity index will increase significantly in Central Asia and north of West Asia but decrease in Southeast Asia and Central Siberia. Seasonally, the aridity index in the Belt and Road region will slightly increase in all other seasons except spring. Central Asia will become drier annually at a rate of more than 20%. The aridity index in South Asia will increase in spring and winter, and that in East Asia will increase in autumn and winter.(4) To changes of the aridity index, the attribution of precipitation and potential evapotranspiration will vary regionally. Precipitation will be the major influencing factor over southern West Asia, southern South Asia, Central-Eastern Siberia, the non-monsoon region of East Asia and the border between West Asia and Central Asia, while potential evapotranspiration will exert greater effects over Central-Eastern Europe, West Siberia, Central Asia and the monsoon region of East Asia.  相似文献   

16.
塔里木河流域径流变化趋势及其对气候变化的响应   总被引:7,自引:0,他引:7  
This paper has studied the change of streamflow and the impact of climatic variability conditions on regional hydrological cycle in the headwater of the Tarim River Basin. This study investigates possible causes of observed trends in streamflow in an environment which is highly variable in terms of atmospheric conditions, and where snow and ice melt play an important role in the natural hydrological regime. The discharge trends of three head streams have a significant increase trend from 1957 to 2002 with the Mann-Kendall test. Complex time-frequency distributions in the streamflow regime are demonstrated especially by Morlet wavelet analysis over 40 years. The purpose is to ascertain the nature of climatic factors spatial and temporal distribution, involved the use of EOF (Empirical Orthogonal Function) to compare the dominant temperature, precipitation and evaporation patterns from normally climatic records over the Tarim's headwater basin. It shows that the first principal component was dominated since the 1990s for temperature and precipitation, which identifies the significant ascending trend of spatial and temporal pattern characteristics under the condition of the global warming. An exponential correlation is highlighted between surface air temperature and mean river discharge monthly, so the regional runoff increases by 10%-16% when surface air temperature rises by 1 ℃. Results suggest that headwater basins are the most vulnerable environments from the point of view of climate change, because their watershed properties promote runoff feeding by glacier and snow melt water and their fundamental vulnerability to temperature changes affects rainfall, snowfall, and glacier and ice melt.  相似文献   

17.
Climate change is a global environmental crisis, but there have been few studies of the effects of climate change on cereal yields on the Tibetan Plateau. We used data from meteorological stations and statistical yearbooks to assess the impacts of climate change on cereal yields in Tibet. Three types of statistical models were selected: fixed-effects model, first-difference models, and linear detrending models. We analyzed the impacts of climate change(including the minimum temperature, precipitation, growing degree days and solar radiation) on cereal yields in Tibet from 1993 to 2017 at the county, prefecture-level city, and autonomous region scales. The results showed that the sensitivity of cereal yields in Tibet to temperature(minimum temperature and growing degree days) was greater than their sensitivity to precipitation and solar radiation. The joint impacts of climate variables were positive, but the sensitivity and significance varied in different regions. The impacts of minimum temperature, precipitation, and solar radiation were positive in all cities, apart from the negative impacts of growing degree days on cereal yields in Lhasa. The impacts of climate trends on cereal yields in Tibet were positive and the results were in the range of 1.5%–4.8%. Among the three types of model, the fixed-effects model was the most robust and the linear detrending model performed better than the first-difference model. The robustness of the first-difference model decreased after adding the interaction terms between different climate variables. Our findings will help in implementing more spatially targeted agricultural adaptations to cope with the impacts of climate change on the agro-ecosystem of the Tibetan Plateau.  相似文献   

18.
Climate change is likely to affect hydrological cycle through precipitation,evapotranspiration,soil moisture etc.In the present study,an attempt has been made to study the climate change and the sensitivity of estimated evapotranspiration to each climatic variable for a semi-arid region of Beijing in North China using data set from 1951 to 2010.Penman-Monteith method was used to calculate reference crop evapotranspiration(ETo).Changes of ETo to each climatic variable was estimated using a sensitivity analysis method proposed in this study.Results show that in the past 60 years,mean temperature and vapor pressure deficit(VPD) were significantly increasing,relative humidity and sunshine hours were significantly decreasing,and wind speed greatly oscillated without a significant trend.Total precipitation was significantly decreasing in corn season(from June to September),but it was increasing in wheat season(from October to next May).The change rates of temperature,relative humidity,VPD,wind speed,annual total precipitation,sunshine hours and solar radiation were 0.42℃,1.47%,0.04 kPa,0.05 m·s–1,25.0 mm,74.0 hours and 90.7 MJ·m–2per decade,respectively.In the past 60 years,yearly ETo was increasing with a rate of 19.5 mm per decade,and total ETos in wheat and corn seasons were increasing with rates of 13.1 and 5.3 mm per decade,respectively.Sensitivity analysis showed that mean air temperature was the first key factor for ETo change in the past 60 years,causing an annual total ETo increase of 7.4%,followed by relative humidity(5.5%) and sunshine hours(–3.1%);the less sensitivity factors were wind speed(0.7%),minimum temperature(–0.3%) and maximum temperature(–0.2%).A greater reduction of total ETo(12.3%) in the past 60 years was found in wheat season,mainly because of mean temperature(8.6%) and relative humidity(5.4%),as compared to a reduction of 6.0% in ETo during corn season due to sunshine hours(–6.9%),relative humidity(4.7%) and temperature(4.5%).Increasing precipitation in the wheat season will improve crop growth,while decreasing precipitation and increasing ETo in the corn season induces a great pressure for local government and farmers to use water more efficiently by widely adopting water-saving technologies in the future.  相似文献   

19.
Glacier inventory compilation during the past 20 years and modifications of that for the Eastern Pamir and Banggong Lake indicate that there are 46,342 modern glaciers with a total area and volume of 59415 km^2 and 5601 km^3 respectively in China. These glaciers can be classified into maritime and continental (including sub-continental and extremely continental) types. Researches show that glaciers in China have been retreating since the Little Ice Age and the mass wastage was accelerated during the past 30 to 40 years. Being an important part of glaciological studies in China,ice core climatic and environmental studies on Tibetan Plateau and in the Antarctica have provided abundant, high resolution information about past climatic and environmental evolution over the Tibetan Plateau and Antarctica. Except for different parameters recorded in ice cores relating to climate and environment changes on Tibetan Plateau, records from ice cores extracted from different glaciers show that the discrepancies in climatic and environmental changes on the north and south parts of the plateau may be the consequence of different influencing effects from terrestrial and solar sources.Glaciological and meteorological phenomena imply that Lambert Glacier valley is an important boundary of climate in the east Antarctica, which is thought to be connected with cyclonic activities and Circum-polar Waves over the Antarctica.  相似文献   

20.
长江源区地表水资源对气候变化的响应及趋势预测(英文)   总被引:2,自引:0,他引:2  
In this paper,variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data,as well as the impact data set(version 2.0) published by the National Climate Center in November 2009.The results indicate that surface water resources showed an increasing trend in the source region of the Yangtze River over the past 51 years,especially after 2004.The trend was very clearly shown,and there were quasi-periods of 9 years and 22 years,where the Tibetan Plateau heating field enhanced the effect,and the plateau monsoon entered a strong period.Precipitation notably increased,and glacier melt water increased due to climate change,all of which are the main climatic causes for increases in water resources in the source region.Based on global climate model prediction,in the SRESA1B climate change scenarios,water resources are likely to increase in this region for the next 20 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号