共查询到13条相似文献,搜索用时 44 毫秒
1.
视皮层分区及其fMRI 研究进展 总被引:3,自引:0,他引:3
血氧水平依赖功能磁共振成像(BOLD—fMRI)作为一种无创、可精确定位的脑功能研究技术,已广泛应用于视觉系统的研究中,并取得了许多重要成果,本文就fMRI研究进展及其在大脑视觉皮层功能分区中的应用做一综述。 相似文献
2.
在睡眠剥夺(sleep deprivation,SD)过程中,人类大脑的神经活动和警觉水平如何受到影响,尤其是感觉运动和视觉系统,目前仍是研究的热点.静息状态功能磁共振成像(resting state functional magnetic resonance imaging,rf MRI)作为一种反映人脑自发活动的非侵入式成像技术,在睡眠剥夺的研究中得到了广泛应用.本研究采用9次重复rf MRI和心理运动警觉任务(psychomotor vigilance task,PVT),以探索23名志愿者在整个36 h的睡眠剥夺过程中神经活动和警觉水平的变化.采用基于PVT的平均反应时间(mean reaction time,MRT)和失效率(lapses ratio,LR)评估警觉水平的变化;采用基于rf MRI的区域同质性(region homogeneity,Re Ho)和低频波动幅度(amplitude of low frequency fluctuation,ALFF)评估大脑神经活动变化.结果表明,感觉运动网络(sensorimotor network,SMN)和视觉区域(visu... 相似文献
3.
在睡眠剥夺(sleep deprivation, SD)过程中,人类大脑的神经活动和警觉水平如何受到影响,尤其是感觉运动和视觉系统,目前仍是研究的热点。静息状态功能磁共振成像(resting state functional magnetic resonance imaging,rfMRI)作为一种反映人脑自发活动的非侵入式成像技术,在睡眠剥夺的研究中得到了广泛应用。本研究采用9次重复rfMRI和心理运动警觉任务(psychomotor vigilance task,PVT),以探索23名志愿者在整个36小时的睡眠剥夺过程中神经活动和警觉水平的变化。我们采用基于PVT的平均反应时间(mean reaction time, MRT)和失效率(lapses ratio, LR)评估警觉水平的变化。我们采用基于rfMRI的区域同质性(region homogeneity,ReHo)和低频波动幅度(amplitude of low frequency fluctuation,ALFF)评估大脑神经活动变化。结果表明,感觉运动网络(sensorimotor network, SMN)和视觉区域(visual network, VN)是受到睡眠剥夺影响最严重的区域。我们采用组独立成分分析(Group Independent component analysis, GICA)将视觉相关区域划分为视觉I区、视觉II区、视觉关联区,并从解剖自动标记(Anatomical automatic labeling,AAL)模板中提取运动感觉相关区域,包括中央前/中央后回、中央旁小叶和辅助运动区。我们发现,睡眠剥夺后16 - 30小时脑神经活动及警惕性下降。我们采用2×3重复测量方差分析,探讨睡眠压力、昼夜节律及其交互作用对感觉运动相关和视觉相关脑区神经活动的影响。我们观察到睡眠压力与交互作用对感觉运动相关区域和视觉相关区域有显著影响。我们采用皮尔逊相关系数评估警觉水平变化与感觉运动相关和视觉相关脑区神经活动变化的关系。睡眠剥夺期间所有感觉运动相关区域的神经活动变化与警觉变化均存在显著的相关关系。我们的研究结果证实,睡眠剥夺从第一天24:00开始改变SMN和VN的警戒水平和神经活动,睡眠压力和昼夜节律在睡眠剥夺期间调节SMN和VN的神经活动。此外,昼夜节律的效应受到睡眠压力的显著调节。感觉运动相关区域和视觉相关区域的增强导致他们远程连接的减弱,这可能是睡眠剥夺期间响应时间变慢的原因。 相似文献
4.
脑对多感觉信息的整合是人和高等动物获取环境中有意义信息的重要方式。长期以来科学界一直认为,脑对不同感觉刺激(包括视觉、听觉、躯体感觉等)信息的分析和加工由不同的感觉皮层介导,最终在联络皮层进行整合,形成综合性的感觉和意识,但最近的一些实验证据显示,以前被认为只负责对单一感觉刺激分析和处理的感觉皮层亦可受其他感觉刺激的影响并直接参与多感觉信息的整合作用,这些新的发现对过去传统的大脑皮层功能分区概念提出了严峻的挑战。就近些年来有关感觉皮层(主要包括听觉、视觉和躯体感觉皮层)对多感觉刺激信息整合的研究进行综述,以增加人们对大脑皮层功能的新认识,为感觉信息处理和编码及感觉信息整合的后续研究提供借鉴。 相似文献
5.
Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing1. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function 2. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions 3. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated 4. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity.Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS 5-7. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex 8,9, premotor cortex 10, primary somatosensory cortex 11,12 and language-related areas 13, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task 2. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders. 相似文献
6.
7.
《Somatosensory & motor research》2013,30(2):110-113
AbstractNine right-handed normal subjects were recruited for this study. We compared the cortical activation during execution of hand movements (right finger flexion–extension) with that during execution of hand movements while chewing gum (right side chewing). We found that execution of hand movements while chewing gum induced less activation in the contralateral SM1 than hand movements alone. Based on our findings, it appears chewing gum during execution of hand movements enhanced the efficiency of hand movements. 相似文献
8.
Hyung-Sik Kim Hong-Won Yeon Mi-Hyun Choi Ji-Hye Kim Jin-Seung Choi Jang-Yeon Park 《Computer methods in biomechanics and biomedical engineering》2013,16(5):481-487
In this study, a tactile stimulator was developed, which can stimulate visual and auditory senses simultaneously by using the E-Prime software. This study tried to compensate for systematic stimulation control and other problems that occurred with previously developed tactile stimulators. The newly developed system consists of three units: a control unit, a drive unit and a vibrator. Since the developed system is a small, lightweight, simple structure with low electrical consumption, a maximum of 35 stimulation channels and various visual and auditory stimulation combinations without delay time, the previous systematic problem is corrected in this study. The system was designed to stimulate any part of the body including the fingers. Since the developed tactile stimulator used E-Prime software, which is widely used in the study of visual and auditory senses, the stimulator is expected to be highly practical due to a diverse combination of stimuli, such as tactile–visual, tactile–auditory, visual–auditory and tactile–visual–auditory stimulation. 相似文献
9.
10.
Saborni Roy Tapas C. Nag Ashish Datt Upadhyay Rashmi Mathur Suman Jain 《Developmental neurobiology》2013,73(9):688-701
The extrinsic sensory stimulation plays a crucial role in the formation and integration of sensory modalities during development. Postnatal behavior is thereby influenced by the type and timing of presentation of prenatal sensory stimuli. In this study, fertilized eggs of white Leghorn chickens during incubation were exposed to either species‐specific calls or no sound. To find the prenatal critical period when auditory stimulation can modulate visual system development, the former group was divided into three subgroups: in subgroup A (SGA), the stimulus was provided during embryonic day (E)10 to E16, in SGB E17‐ hatching, and in SGC E10‐hatching. The auditory and visual perceptual learning was recorded at posthatch day (PH) 1–3, whereas synaptic plasticity (evident from synaptophysin and PSD‐95 expression), was observed at E19, E20, and PH 1–3. An increased number of responders were observed in both auditory and visual preference tests at PH 1 following stimulation. Although a decrease in latency of entry and an increase in total time spent were observed in all stimulated groups, it was most significant in SGC in auditory preference and in SGB and SGC in visual preference test. The auditory cortex of SGC and visual Wulst of SGB and SGC revealed higher expression of synaptic proteins, compared to control and SGA. A significant inter‐hemispheric and gender‐based difference in expression was also found in all groups. These results indicate facilitation of postnatal behaviour and synaptogenesis in both auditory and visual systems following prenatal repetitive auditory stimulation, only when given during prenatal critical period of development. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 688–701, 2013 相似文献
11.
目的:探讨声音强度对大鼠听皮层神经元特征频率可塑性的影响。方法:采用常规电生理学细胞外记录技术,测定不同声刺激强度下,听皮层神经元的特征频率和调谐曲线,比较条件刺激前后的变化。结果:在条件刺激声频率和神经元的特征频率相差±1.0kHz范围内,条件刺激诱导的神经元特征频率可塑性与条件刺激强度有关,较高的刺激强度比较低刺激强度诱导的特征频率可塑性概率高;特征频率可塑性的概率与神经元的频率调谐曲线类型相关,但这种相关几乎不受条件刺激声强度影响。结论:条件声刺激强度可明显影响大鼠听皮层神经元特征频率的可塑性。 相似文献
12.
《Current biology : CB》2021,31(21):4839-4844.e4
- Download : Download high-res image (228KB)
- Download : Download full-size image
13.
Nela Cicmil Kristine Krug 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1677)
Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. 相似文献