首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
海水干湿交替环境对铝合金牺牲阳极性能的影响   总被引:1,自引:0,他引:1  
在海水干湿交替条件下研究了干湿比、环境湿度对铝合金牺牲阳极电化学性能的影响,分析了铝合金牺牲阳极的溶解形貌、腐蚀产物以及电流效率,讨论了造成铝阳极电化学性能差异的原因。结果表明:随着干湿比的增大,铝合金牺牲阳极开路电位和工作电位升高,阳极电流效率由96.4%降低至76.5%,铝合金牺牲阳极表面由均匀腐蚀转变为局部腐蚀;环境湿度的增加在一定程度上加剧了铝合金牺牲阳极的局部腐蚀,降低了其电化学性能。  相似文献   

2.
测试潜艇常用的4种牺牲阳极在不同干湿交替周期的电化学阻抗谱,分析了它们的耐腐蚀性能.结果表明,干湿交替条件下阳极失效的主要原因是腐蚀产物覆盖致使阳极表面的活性溶解点减少,阻碍阳极的进一步活化.经过一定的干湿交替循环后有些阳极结壳严重,导致容抗弧增大,阳极的活化溶解能力大大降低.在干湿交替环境中,合金的使用性能从差到好的顺序为:Zn-Al-Cd相似文献   

3.
A1-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究   总被引:1,自引:0,他引:1  
采用电化学阻抗谱技术、失重法和扫描电镜分析技术(SEM)研究Al-Zn-In-Mg-Ga-Mn牺牲阳极在自腐蚀与7A52铝合金偶接两种条件下的溶解行为和活化性能。结果表明:偶连接的Al-Zn-In-Mg-Ga-Mn牺牲阳极有效地降低了7A52Al的腐蚀速率,牺牲阳极一直存在活性溶解,腐蚀均匀,腐蚀产物易脱落。自腐蚀的Al-Zn-In-Mg-Ga-Mn牺牲阳极发生局部腐蚀,表面溶解不均匀;表面腐蚀产物和氧化膜以及活性溶解点的减少阻滞了牺牲阳极溶解反应。  相似文献   

4.
四种典型牺牲阳极在干湿交替环境中的性能评价   总被引:1,自引:1,他引:0  
方志刚 《表面技术》2012,41(4):31-34
通过模拟海水/海洋大气干湿交替环境,研究了四种典型牺牲阳极的工作电位变化规律、电流变化规律、溶解产物形貌及产物成分.结果表明:在干湿交替环境中,四种牺牲阳极的性能由好至差依次为Al-Zn-In-Mg-Ga-Mn阳极、Al-Zn-In-Mg Ti阳极、Al-Zn-In-Cd阳极、Zn-Al-Cd阳极,合适成分的Al-Zn-In-Mg-Ga-Mn阳极是用于干湿交替环境下较为理想的阳极材料.  相似文献   

5.
Al-Zn-In系牺牲阳极低温电化学性能研究   总被引:4,自引:0,他引:4  
研究了三种Al-Zn-In牺牲阳极在低温下的电化学性能,其中Al-Zn-In-Cd牺牲阳极在低温时电流效率为84%左右,阳极溶解呈非均匀状,腐蚀产物不脱落,不适用于低温环境;Al-Zn-In-Mg-Ti牺牲阳极在低温时电流效率为90%左右,表面呈均匀状溶解,腐蚀产物脱落,具有较好的电化学性能.  相似文献   

6.
牺牲阳极的阴极保护法是海洋环境下控制钢结构腐蚀有效的方法,电流效率与电位稳定性是鉴别牺牲阳极电化学性能优劣的重要指标。本文使用了电流效率测试和表面形貌观察等方法,测试分析了三种不同成分铝合金牺牲阳极在低温高压海水环境中的电化学性能,结果表明:三种成分的铝合金牺牲阳极都具有较高的电流效率,其中成分3的铝合金牺牲阳极表面溶解最均匀,呈现均匀溶解形貌,未见明显蚀坑和晶间腐蚀现象。  相似文献   

7.
采用恒电流法、电化学阻抗谱并结合表面形貌观察研究了动态海水中温度对Al-Zn-In-Mg-Ti牺牲阳极电化学性能的影响,并与静态条件下测试结果进行比较。结果显示,随着海水温度降低,Al-Zn-In-Mg-Ti阳极试样的开路电位和工作电位负移,电化学容量增大,电流效率升高,溶解形貌更好;温度相同时,动态海水中Al-Zn-In-Mg-Ti阳极试样的开路电位、工作电位较静态条件下正移,电化学容量及电流效率下降,溶解形貌稍差。  相似文献   

8.
艾素华  王中光 《金属学报》1988,24(3):193-199
本文研究了自来水和3.5%NaCl水溶液分别在全浸和干湿交替状态下对热轧双相钢疲劳性能的影响.结果表明:与空气中的疲劳寿命相比,腐蚀环境有不同程度的降低作用,并以喷雾盐水影响最大.在相同腐蚀条件下,环境的影响随应力幅的降低而增强.马氏体抗疲劳断裂的能力高于铁素体.试样表面和断口的观察结果发现,腐蚀疲劳裂纹萌生与腐蚀坑密切相关,蚀坑以阳极溶解方式形成.  相似文献   

9.
基于前期牺牲阳极材料研究成果,对极地低温环境专用Al-Zn-In-Mg-Ti-Ga-Mn牺牲阳极开展模拟服役环境下的电化学性能测试,通过完整周期的“雪龙号”极地航行试验考察极端环境因素对牺牲阳极电化学性能的影响,采用高倍率扫描电镜等手段观测材料腐蚀产物特征和表面微观形貌。结果表明:在极端环境因素影响下,阳极材料的活化和溶解行为发生变化,海水环境中较高的溶解氧含量和盐度削弱了低温条件对离子运动的影响,阳极材料自腐蚀程度下降,阴极去极化反应得到遏制,阳极表面活化溶解速率和活性金属沉积速率得到提升,表面钝化膜的更新动态平衡得到有效维持,牺牲阳极在极地海洋环境中表现出良好的阴极保护性能。  相似文献   

10.
目的研究干湿交替海水环境对碳钢腐蚀速率的影响。方法以青岛小麦岛海域海水为试验介质,使用周期间浸设备,以60 min为一个循环,在浸没/干燥时间分别为10 min/50 min、20 min/40 min、30 min/30 min三种不同干湿比的干湿交替条件下,对碳钢试片和电化学试样分别试验3、7、14、21、28 d后取出。通过失重法和电化学测试方法,研究了腐蚀速率的变化情况,使用X射线衍射仪(XRD)、能量色散谱仪(EDS)和扫描电子显微镜(SEM)分别研究了腐蚀产物成分、腐蚀产物形貌和除锈后的腐蚀形貌。结果失重法和电化学方法表明,碳钢在三种干湿比条件下的腐蚀速率为全浸条件下的3~8倍,且碳钢的腐蚀速率随着干湿比的增大而增大,但是增大的幅度越来越小。随着干湿比的增大,碳钢表面生成的锈层变薄,腐蚀产物中γ-FOOH和氧的含量升高,Fe_3O_4的含量降低。结论干湿交替环境的干湿比越大,对碳钢腐蚀的加速作用越显著,且这一加速作用存在极大值。  相似文献   

11.
龙晓竣  方翔  梅英杰  范志宏  张伟 《表面技术》2021,50(11):297-305
目的 分析A13型Al-Zn-In-Si牺牲阳极在海水、海泥中的电化学性能.方法 采用恒电流极化进行4 d的加速实验,使用电化学阻抗谱(EIS)分析电化学腐蚀过程,通过扫描电子显微镜(SEM)、能谱分析(EDS)及三维超景深显微镜观察分析腐蚀形貌及表面化学成分,对比研究了Al-Zn-In-Si牺牲阳极在模拟海水和海泥环境下的腐蚀形貌、电化学性能.结果 在模拟海水和海泥环境中,尽管Al-Zn-In-Si牺牲阳极都满足DNVGL-RP-B401的要求,但在海泥环境中,其电化学效率仅为65.97%,远低于海水环境中的89.43%.牺牲阳极在海水环境中发生均匀腐蚀,而在海泥环境中却呈现严重的不均匀腐蚀现象,表面腐蚀坑为疏松多孔蜂窝状.结论 在海泥环境下,Al-Zn-In-Si牺牲阳极的腐蚀产物扩散困难,局部呈现腐蚀坑,自腐蚀速率高,导致电化学效率降低.溶解过程中,由于组织脱落,自身消耗增加,电化学容量降低,从而导致阳极在模拟海泥环境中的电化学性能低于海水环境,并揭示了阳极在模拟海水、海泥环境中的腐蚀机理.  相似文献   

12.
采用恒电流试验评价了不同Ga含量的Al-Ga二元合金牺牲阳极的电化学性能,并通过X射线衍射、扫描电镜及能谱分析、回沉积等实验探讨了阳极的活化溶解机制。结果表明,采用高纯铝锭炼制的Al-0.07%Ga 二元合金工作电位在-0.820 V~-0.876 V(vs.Ag/AgCl海水)之间,而用工业铝锭Al99.85炼制的Al-0.1%Ga二元合金阳极工作电位在 -0.802 V~-0.818 V之间,基本满足低驱动电位牺牲阳极的要求,但局部腐蚀溶解均较严重,溶解性能有待改善;Al-Ga合金腐蚀产物中的 Ga含量随基体中Ga含量的增加而增加,但远小于基体中的Ga含量;溶解后阳极表面的Ga含量大于基体中Ga含量,原因是溶解在溶液中的 Ga3+回沉积到阳极表面,使得阳极表面Ga含量增加;Al-Ga阳极的活化符合溶解-再沉积机理。  相似文献   

13.
采用恒电流实验评价了Al-Zn-Ga-Si牺牲阳极在不同温度海水中的电化学性能,并利用电化学阻抗谱研究了其电化学行为,探讨了温度对阳极活化溶解的影响机制。结果表明:随着海水温度的降低,阳极的开路电位和工作电位均呈正移趋势,但工作电位在-0.770~-0.850 V之间。在低温下阳极的溶解性能变差,呈不同程度的局部腐蚀溶解,原因是温度降低影响了阳极表面活化溶解点产生的活化金属离子的扩散。  相似文献   

14.
    通过电化学测试方法研究了不同参数退火后Cu-30Ni合金管在静止人工海水中的腐蚀行为.结果表明,海水腐蚀初期,富Ni表面膜对Cu3-0Ni合金管耐海水腐蚀性能的影响起主要作用,其相对于基体成为阳极性保护,且随着退火温度升高,保温时间延长,Cu3-0Ni合金管抗蚀能力越好;随着海水浸泡时间的延长,退火后Cu-30Ni合金管的显微组织结构对海水腐蚀性能影响占优,细小的富Ni颗粒成为微电池的阳极,优先被腐蚀;720℃×30 min热处理后试样抗腐蚀性能较好,腐蚀40天后,没有发现点蚀坑.  相似文献   

15.
固溶处理对Al-Zn-In-Mg-Ti-Mn合金电化学性能的影响   总被引:1,自引:0,他引:1  
    研究了510℃×10 h固溶处理对Mn含量不同的Al-Zn-In-Mg-Ti-Mn合金在人造海水中的腐蚀电化学性能的影响.结果表明:固溶处理使该合金的电流效率下降,但对其自腐蚀电位影响不大;当合金中Mn含量较高时,固溶处理可改善其腐蚀过程中的表面腐蚀状况,降低工作电位,而电流效率下降不大;等效电路RS(C1(C2Rt)(QR)(L1Rad1)(L2Rad2)(L3Rad3))能较好地拟合该合金在3%NaCl溶液中腐蚀的EIS谱,基本反映了其电化学腐蚀过程.  相似文献   

16.
1 INTRODUCTIONCu Nialloyshavebeenprimarilyusedastubesforcondensersandheatexchangerssincetheycameintopracticalusein195 0’s .Asthealloyshaveexcel lentcorrosionandbiofoulingresistancetoseawater,theirapplicationsinmarineengineeringhavebeenrapidlydeveloped .How…  相似文献   

17.
Corrosion behavior of AZ91 magnesium alloy in simulating acid rain under wet-dry cyclic condition was investigated.The results show that corrosion potential shifts positively and the corrosion current density decreases at low wet-dry cyclic time.Further increase of the cyclic time results in the negative movement of corrosion potential and the increase of current density.SEM observation indicates that corrosion occurs only inαphase,βphase is inert in corrosive medium,and the corrosion of AZ91 magnesium a...  相似文献   

18.
Overcoming the reduction of current efficiency and stacking of corrosion products on the surface of Al–Zn–In sacrificial anodes after long-term use is of great significance for Al–Zn–In alloy as an anode material for cathodic protection of steel structures in seawater. In this study, four different sacrificial anode materials were prepared based on the Al-6Zn-0.03In (wt%) alloy without and with the addition of alloying elements of Sn, Cd, and Si, respectively. The influence of the addition of Sn, Cd, and Si on the microstructure and electrochemical performance of the Al–Zn–In anode was investigated by optical microscopy and electrochemical measurements. The results show that the introduction of Sn, Cd, and Si changes the microdendrite structure of Al–Zn–In to equiaxed grain. The added Sn, Cd, and Si alloys have more negative and stable working potential and uniformly dissolved morphology. The actual capacity and current efficiency of aluminum alloys increase from 2,000.6 Ah/kg and 70.7% of Al–Zn–In alloy to 2,539.4 Ah/kg and 88.6% of Al–Zn–In–Sn, 2,437.3 Ah/kg and 85.5% of Al–Zn–In–Cd and 2,500.4 Ah/kg and 88.8% of Al–Zn–In–Si alloys, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号