首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
We previously demonstrated that amylin inhibits food intake and gastric emptying in rats with half-maximal effective doses (ED(50)s) of 8 and 3 pmol x kg(-1) x min(-1) and maximal inhibitions of 78 and 60%, respectively. In this study of identical design, rats received intravenous infusions of salmon calcitonin (sCT), rat calcitonin (rCT), rat calcitonin gene-related peptide (rCGRP), and rat adrenomedullin (rADM) for 3 h at dark onset, and food intake was measured for 17 h or for 15 min and gastric emptying of saline was measured during the final 5 min. sCT, rCGRP, and rADM inhibited food intake with estimated ED(50)s of 0.5, 26, and 35 pmol x kg(-1) x min(-1) and maximal inhibitions of 88, 90, and 49%, respectively. rCT was not effective at doses up to 100 pmol x kg(-1) x min(-1). sCT, rCGRP, rADM, and rCT inhibited gastric emptying with ED(50)s of 1, 130, 160, and 730 pmol x kg(-1) x min(-1) and maximal inhibitions of 60, 66, 60, and 33%, respectively. These results suggest that amylin and sCT may act by a common mechanism to decrease food intake, which includes inhibition of gastric emptying.  相似文献   

2.
We investigated the role of histamine H1 receptors in mediating the anorectic effect of intraperitoneally injected amylin (5 and 20 microg/kg), the amylin agonist salmon calcitonin (sCT; 10 microg/kg), leptin (1.3 mg/kg), and cholecystokinin (CCK; 20 microg/kg). The experiments were performed with mice lacking functional H1 receptors (H1Rko) and wild-type (WT) controls. The mice were also injected with the H3 antagonist thioperamide (20 mg/kg), which reduces feeding by enhancing the release of endogenous histamine through presynaptic H3 receptors. The feeding-suppressive effect of thioperamide was abolished in H1Rko mice. The anorectic effects of amylin and sCT were significantly reduced in 12-h food-deprived H1Rko mice compared with WT mice [1-h food intake: WT-NaCl 0.51 +/- 0.05 g vs. WT-amylin (5 microg/kg) 0.30 +/- 0.06 g (P < 0.01); H1Rko-NaCl 0.45 +/- 0.05 g vs. H1Rko-amylin 0.40 +/- 0.04 g; WT-NaCl 0.40 +/- 0.09 g vs. WT-sCT (10 microg/kg) 0.14 +/- 0.10 g (P < 0.05); H1Rko-NaCl 0.44 +/- 0.08 g vs. H1Rko-sCT 0.50 +/- 0.06 g]. The anorectic effect of leptin was absent in ad libitum-fed H1Rko mice, whereas CCK equally reduced feeding in WT and H1Rko animals. This suggests that the histaminergic system is involved in mediating the anorectic effects of peripheral amylin and sCT via histamine H1 receptors. The same applies to leptin but not to CCK. H1Rko mice showed significantly increased body weight gain compared with WT mice, supporting the role of endogenous histamine in the regulation of feeding and body weight.  相似文献   

3.
Previous studies indicated that amylin contributes to the anorectic effects of cholecystokinin (CCK) and bombesin (BBS), possibly by enhancing the release of pancreatic amylin or by modulating their anorectic actions within the central nervous system (CNS). To elucidate the interaction between amylin and CCK or BBS, respectively, we investigated the influence of an IP injection of CCK or BBS on feeding in amylin-deficient mice (IAPP(-/-)). The anorectic effects of CCK and BBS were nearly abolished in IAPP(-/-) mice compared to wildtype (WT) mice (e.g. 20 microg/kg CCK, 1-h food intake: WT/NaCl 0.53 +/- 0.03 g; WT/CCK 0.16 +/- 0.03 g (P < 0.001); IAPP(-/-)/NaCl 0.49 +/- 0.05 g; IAPP(-/-)/CCK 0.39 +/- 0.04 g). Acute amylin replacement restored the anorectic effect of CCK in IAPP(-/-) mice.To find out whether CCK or BBS enhance the feeding-induced release of pancreatic amylin, we injected rats with CCK-8 (0.5-50 microg/kg) or BBS (5 microg/kg) and measured plasma amylin levels after injections. Neither CCK nor BBS increased the plasma amylin level in rats. We suggest that the mediation of the anorectic effects of CCK and BBS by amylin is not dependent on a CCK- or BBS-induced release of pancreatic amylin, but may rather be due to a modulation of their effects by amylin within the CNS.  相似文献   

4.
Dopamine D(2) receptors mediate amylin's acute satiety effect   总被引:1,自引:0,他引:1  
The anorectic effect of the pancreatic peptide amylin has been established in numerous studies. Here, we investigated the influence of a pretreatment with dopamine (DA) D(1)- and D(2)-receptor antagonists on the anorectic effect of intraperitoneally injected amylin in rats fed a medium-fat (18% fat) diet. In 24-h food-deprived rats, pretreatment with the DA D(2)-receptor antagonist raclopride [100 microg/kg (0.2 micromol/kg) ip] significantly attenuated amylin's (5 microg/kg ip) anorectic effect, whereas raclopride alone had no effect on food intake [i.e., food intakes 1 h after injection were (n = 12): NaCl/NaCl 7.3 +/- 0.5 g; NaCl/amylin 3.9 +/- 0.6; raclopride/NaCl 7.7 +/- 0.7; raclopride/amylin 5.6 +/- 0.7]. Pretreatment with another DA D(2) receptor antagonist, sulpiride [50 mg/kg (154 micromol/kg) ip], similarly reduced amylin's satiety effect, whereas pretreatment with the DA D(1)-receptor antagonist SCH-23390 [10 microg/kg (0.03 micromol/kg) ip] did not influence amylin's effect. SCH-23390, however, completely blocked the anorexia induced by D-amphetamine (0.3 mg/kg ip). These results suggest that, under the present feeding conditions, the dopaminergic system mediates part of amylin's inhibitory effect on feeding in rats when administered intraperitoneally. This seems to involve DA D(2) receptors but not D(1) receptors.  相似文献   

5.
Amylin receptor blockade stimulates food intake in rats   总被引:1,自引:0,他引:1  
Amylin is postulated to act as a hormonal signal from the pancreas to the brain to inhibit food intake and regulate energy reserves. Amylin potently reduces food intake, body weight, and adiposity when administered systemically or into the brain. Whether selective blockade of endogenous amylin action increases food intake and adiposity remains to be clearly established. In the present study, the amylin receptor antagonist acetyl-[Asn(30), Tyr(32)] sCT-(8-32) (AC187) was used to assess whether action of endogenous amylin is essential for normal satiation to occur. Non-food-deprived rats received a 3- to 4-h intravenous infusion of AC187 (60-2,000 pmol.kg(-1).min(-1)), either alone or coadministered with a 3-h intravenous infusion of amylin (2.5 or 5 pmol.kg(-1).min(-1)) or a 2-h intragastric infusion of an elemental liquid diet (4 kcal/h). Infusions began just before dark onset. Food intake and meal patterns during the first 4 h of the dark period were determined from continuous computer recordings of changes in food bowl weight. Amylin inhibited food intake by approximately 50%, and AC187 attenuated this response by approximately 50%. AC187 dose-dependently stimulated food intake (maximal increases from 76 to 171%), whether administered alone or with an intragastric infusion of liquid diet. Amylin reduced mean meal size and meal frequency, AC187 attenuated these responses, and AC187 administration alone increased mean meal size and meal frequency. These results support the hypothesis that endogenous amylin plays an essential role in reducing meal size and increasing the postmeal interval of satiety.  相似文献   

6.
Mollet A  Meier S  Riediger T  Lutz TA 《Peptides》2003,24(1):155-158
In the present study we investigated the role of hypothalamic histamine H(1) receptors in the mediation of peripheral amylin's anorectic effect. Rats with chronically implanted bilateral cannulas were infused into the ventromedial hypothalamus (VMH) with the specific histamine H(1) receptor antagonists pyrilamine (PYR, 104 nmol/rat) or chlorpheniramine (CPA, 52 nmol/rat), respectively, combined with an intraperitoneal (IP) injection of amylin (5 microg/kg). Amylin's inhibitory effect on food intake (i.e. 50% reduction in cumulative food intake 30 min after ingestion) was markedly reduced by CPA and PYR (e.g. amylin and CPA: 5% reduction versus control). We therefore suggest an important role of hypothalamic H(1) receptors in the signal transduction of peripheral amylin's anorectic action.  相似文献   

7.
Amylinergic mechanisms are believed to be involved in the control of appetite. This study examined the effects of the amylin agonist, salmon calcitonin, on food intake and meal patterns in adult male rhesus monkeys. Fifteen minutes before the onset of their 6-h daily feeding period, monkeys received intramuscular injections of various doses of salmon calcitonin (0.032, 0.056, 0.1, 0.32, and 1 microg/kg) or saline. Salmon calcitonin dose dependently reduced total daily and hourly food intake, with significant decreases at the 0.1, 0.32, and 1 microg/kg doses. Daily food intake was reduced by approximately 35%, 62%, and 96%, at these doses, respectively. An analysis of meal patterns revealed that size of the first meal was significantly reduced across the dose range of 0.056 to 1 microg/kg, while average meal size was reduced with the 0.32 and 1 microg/kg doses. Meal number was only affected at the 1 microg/kg dose. Repeated 5-day administration of the 0.1 microg/kg dose resulted in a reduction in daily food intake only on injection day 2, while significant reductions in food intake were observed on all five injection days with a 0.32 microg/kg dose. Daily food intake was also reduced for 1 day after the termination of the 5-day injections of the 0.32 microg/kg salmon calcitonin dose. These sustained reductions in intake were expressed through decreases in meal size. These data demonstrate that salmon calcitonin acutely and consistently decreases food intake mainly through reductions in meal sizes in nonhuman primates.  相似文献   

8.
In mammals, amylin (AMY) is a peptide that is secreted from the pancreas in response to a meal. AMY inhibits food intake and may also contribute to the anorectic effects of the brain-gut peptide cholecystokinin (CCK). In this study, we assessed the role of AMY in the regulation of food intake in goldfish (Carassius auratus) and its interactions with CCK. Fish were injected intraperitoneally (i.p.) with mammalian AMY and intracerebroventricularly (i.c.v.) with mammalian AMY, alone or in combination with the sulfated octapeptide CCK-8S. We also assessed the effects of i.c.v. injections of AC187, an amylin receptor antagonist on the central actions of both AMY and CCK-8S, as well as the effects of i.c.v. injections of proglumide, a CCK receptor antagonist, on the central effects of AMY. AMY injected i.p. at 100 ng/g but not 25 or 50 ng/g or i.c.v. at 10 ng/g but not 1 ng/g significantly decreased food intake as compared to saline-treated fish. Fish co-treated i.c.v. with AMY at 1 ng/g and CCK-8S at 1 ng/g had a food intake lower than that of control fish and fish treated with either 1 ng/g CCK-8S or 1 ng/g AMY, suggesting a synergy between the two systems. Whereas low i.c.v. doses of AC187 (30 ng/g) had no effect, moderate doses (50 ng/g) induced an increase in food intake, indicating a role of endogenous AMY in satiety in goldfish. Blocking central amylin receptors with i.c.v. AC187 (30 ng/g) resulted in an inhibition of both i.c.v. AMY- and CCK-induced reduction in feeding. Blocking central CCK receptors with i.c.v. proglumide (25 ng/g) resulted in an inhibition of both i.c.v. CCK-induced and AMY-induced decrease in food intake. Our results show for the first time in fish that AMY is a potent anorexigenic factor and that its actions are interdependent with those of CCK.  相似文献   

9.
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces no effect or a transient reduction in daily food intake and body weight. Our aim was to identify an intermittent dosing strategy for intraperitoneal infusion of salmon calcitonin (sCT), a homolog of amylin that produces a sustained 25-35% reduction in daily food intake and adiposity in diet-induced obese rats. Rats (649 +/- 10 g body wt, 27 +/- 1% body fat), with intraperitoneal catheters tethered to infusion swivels, had free access to a 45% fat diet. Food intake, body weight, and adiposity during the 7-wk test period were relatively stable in the vehicle-treated rats (n = 16). None of 10 sCT dosing regimens administered in succession to a second group of rats (n = 18) produced a sustained 25-35% reduction in daily food intake for >5 days, although body weight and adiposity were reduced by 9% (587 +/- 12 vs. 651 +/- 14 g) and 22% (20.6 +/- 1.2 vs. 26.5 +/- 1.1%), respectively, across the 7-wk period. The declining inhibitory effect of sCT on daily food intake with the 6-h interinfusion interval appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of sCT on daily food intake with the 2- to 3-h interinfusion interval suggested possible receptor downregulation and tolerance to frequent sCT administration; however, food intake increased dramatically when sCT was discontinued for 1 day after apparent loss of treatment efficacy. Together, these results demonstrate the activation of a potent homeostatic response to increase food intake when sCT reduces food intake and energy reserves in diet-induced obese rats.  相似文献   

10.
Amylin is a peptide hormone that is cosecreted with insulin from the pancreas during and after food intake. Peripherally injected amylin potently inhibits feeding by acting on the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. We recently demonstrated that AP neurons are excited by a near physiological concentration of amylin. However, the subsequent neuronal mechanisms and the relevance of endogenously released amylin for the regulation of food intake are poorly understood. Therefore, we investigated 1) amylin's contribution to feeding-induced c-Fos expression in the rat AP and its ascending projection sites, and 2) amylin's ability to reverse fasting-induced c-Fos expression in the lateral hypothalamic area (LHA). Similar to amylin (20 microg/kg sc), refeeding of 24-h food-deprived rats induced c-Fos expression in the AP, the nucleus of the solitary tract, the lateral parabrachial nucleus, and the central nucleus of the amygdala. In AP-lesioned rats, the amylin-induced c-Fos expression in each of these sites was blunted, indicating an AP-mediated activation of these structures. Pretreatment with the amylin antagonist AC-187 (1 mg/kg sc) inhibited feeding-induced c-Fos expression in the AP. Food deprivation activated LHA neurons, a response known to be associated with hunger. This effect was reversed within 2 h after refeeding and also in nonrefed animals that received amylin. In summary, our data provide the first evidence that feeding-induced amylin release activates AP neurons projecting to subsequent relay stations known to transmit meal-related signals to the forebrain. Activation of this pathway seems to coincide with an inhibition of LHA neurons.  相似文献   

11.
Does neuropeptide Y contribute to the anorectic action of amylin?   总被引:2,自引:0,他引:2  
Morris MJ  Nguyen T 《Peptides》2001,22(3):541-546
Neuropeptide Y (NPY) is a potent feeding stimulant acting at the level of the hypothalamus. Amylin, a peptide co-released with insulin from pancreatic beta cells, inhibits feeding following peripheral or central administration. However, the mechanism by which amylin exerts its anorectic effect is controversial. This study investigated the acute effect of amylin on food intake induced by NPY, and the effect of chronic amylin administration on food intake and body weight in male Sprague Dawley rats previously implanted with intracerebroventricular (icv) cannulae. Rats received 1 nmol NPY, followed by amylin (0.05, 0.1, 0.5 nmol) or 2 microl saline. Increasing doses of amylin resulted in a dose-dependent inhibition of NPY-induced feeding by 31%, 74% and 99%, respectively (P < 0.05). To determine the chronic effects of i.c.v. amylin administration on feeding, rats received 0.5 nmol amylin or saline daily, 30 min before dark phase, over 6 days. Amylin significantly reduced food intake at 1, 4, 16 and 24 hours; after 6 days, amylin-treated rats showed a significant reduction in body weight, having lost 17.3 +/- 6.1 g, while control animals gained 7.7 +/- 5.1 g (P < 0.05). Brain NPY concentrations were not elevated, despite the reduced food intake, suggesting amylin may regulate NPY production or release. Thus, amylin potently inhibits NPY-induced feeding and attenuates normal 24 hour food intake, leading to weight loss.  相似文献   

12.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

13.
Synthetic salmon calcitonin (sCT) given SC (30 MRC U/kg) or ICV (1.4 U, 300 ng) inhibited 24-hr food consumption in the rat by 50–100%. Furthermore, ICV doses of sCT ranging from 75 ng (0.35 U) to 300 ng (1.4 U) lowered both food and water intake in a dose-dependent manner. Use of various forms of CT give an apparent order of potency of salmon>porcine≥human with sCT being at least 40 fold more potent than the mammalian forms. Measurement of food and water intake over a brief (30–90 min) period showed that ICV sCT was effective in reducing food and water consumption regardless of whether it had been given 1, 12, or 23 hr previously. Daily administration of sCT for 5 days caused marked suppression of food and water intake for 2 days; thereafter, consumption returned toward normal, becoming equivalent to vehicle injected controls by day 3 or 4 despite continued daily injections of sCT. The results show that CT can act centrally to modify certain types of behavior and are of special interest since CT-like peptides have been described in the pituitary and hypothalamus and since CT receptors have been reported in hypothalamic and other brain regions.  相似文献   

14.
The interaction between ghrelin and bombesin or amylin administered intraperitoneally on food intake and brain neuronal activity was assessed by Fos-like immunoreactivity (FLI) in nonfasted rats. Ghrelin (13 microg/kg ip) increased food intake compared with the vehicle group when measured at 30 min (g/kg: 3.66 +/- 0.80 vs. 1.68 +/- 0.42, P < 0.0087). Bombesin (8 microg/kg) injected intraperitoneally with ghrelin (13 microg/kg) blocked the orexigenic effect of ghrelin (1.18 +/- 0.41 g/kg, P < 0.0002). Bombesin alone (4 and 8 microg/kg ip) exerted a dose-related nonsignificant reduction of food intake (g/kg: 1.08 +/- 0.44, P > 0.45 and 0.55 +/- 0.34, P > 0.16, respectively). By contrast, ghrelin-induced stimulation of food intake (g/kg: 3.96 +/- 0.56 g/kg vs. vehicle 0.82 +/- 0.59, P < 0.004) was not altered by amylin (1 and 5 microg/kg ip) (g/kg: 4.37 +/- 1.12, P > 0.69, and 3.01 +/- 0.78, respectively, P > 0.37). Ghrelin increased the number of FLI-positive neurons/section in the arcuate nucleus (ARC) compared with vehicle (median: 42 vs. 19, P < 0.008). Bombesin alone (4 and 8 microg/kg ip) did not induce FLI neurons in the paraventricular nucleus of the hypothalamus (PVN) and coadministered with ghrelin did not alter ghrelin-induced FLI in the ARC. However, bombesin (8 microg/kg) with ghrelin significantly increased neuronal activity in the PVN approximately threefold compared with vehicle and approximately 1.5-fold compared with the ghrelin group. Bombesin (8 microg/kg) with ghrelin injected intraperitoneally induced Fos expression in 22.4 +/- 0.8% of CRF-immunoreactive neurons in the PVN. These results suggest that peripheral bombesin, unlike amylin, inhibits peripheral ghrelin induced food intake and enhances activation of CRF neurons in the PVN.  相似文献   

15.
We investigate whether leptin treatment to lactating rats affects food intake, body weight and leptin serum concentration and its anorectic effect on their adult offspring. Lactating rats were divided into 2 groups: Lep-single injected with recombinant rat leptin (8 microg/100 g of body weight, daily for the last 3 consecutive days of lactation) and control group (C) that received the same volume of saline. After weaning all pups had free access to the control diet, their body weight and food intake were monitored at each 4 days until 180 days of age, when they were tested for its food intake and response to either leptin (0.5 mg/kg body wt, ip) or saline vehicle. The offspring of the leptin-treated dams gained more weight and had higher food intake from day 37 onward (p<0.05), higher amount of retroperitoneal white adipose tissue (RPWAT) (37%, p<0.05) and higher leptin serum concentration (40%, p<0.05) at 180 days of age compared to control group. The food intake at 2, 4, 6 and 24 h was unaffected after acute injection of leptin in these animals, suggesting resistance to the anorectic effect of leptin. The maternal leptin treatment during lactation makes their adult offspring more susceptible to overweight with resistance to the anorectic effect of leptin.  相似文献   

16.
Syntheses, structures and anorectic effects of human and rat amylin.   总被引:3,自引:0,他引:3  
Amylin, a 37-residue polypeptide with a single disulfide bond originally isolated from the pancreas of type-II diabetic patients, has been shown to cause peripheral insulin resistance and to attenuate the inhibition of hepatic glucose output by insulin. We have also shown that amylin is present in the rat hypothalamus and that it inhibits food intake by rats. In order to further investigate the anorectic properties we synthesized both human and rat amylin by the solid phase method and purified to homogeneity in an overall yield of 10-20%. Structural analyses indicated that human amylin exhibited predominantly a beta-sheet structure at both acidic and alkaline pH, whereas no ordered structure was evident in the case of rat amylin. Intrahypothalamic injection of rat amylin resulted in a potent dose-dependent inhibitory effect on the food intake by rats adapted to eat their daily ration of food in an eight-hour period. Human amylin was less effective as an anorectic agent. Furthermore, rat amylin completely blocked the potent orexigenic effect of neuropeptide Y (NPY). These investigations show that there is a fundamental difference in the secondary structures of human and rat amylin and that rat amylin is a potent inhibitor of both basal and NPY-induced feeding by rats.  相似文献   

17.
CCK is a physiological inhibitor of gastric emptying and food intake. The pancreatic peptide amylin exerts similar actions, yet its physiological importance is uncertain. Objectives were to compare the dose-dependent effects of intravenous infusion of amylin and CCK-8 on gastric emptying and food intake in rats, and to assess whether physiological doses of amylin are effective. Amylin and CCK-8 inhibited gastric emptying with mean effective doses (ED(50)s) of 3 and 35 pmol x kg(-1) x min(-1) and maximal inhibitions of 60 and 65%, respectively. Amylin and CCK-8 inhibited food intake with ED(50)s of 8 and 14 pmol x kg(-1) x min(-1) and maximal inhibitions of 78 and 69%, respectively. The minimal effective amylin dose for each effect was 1 pmol x kg(-1) x min(-1). Our previous work suggests that this dose increases plasma amylin by an amount comparable to that produced by a meal. These results support the hypothesis that amylin acts as a hormonal signal to the brain to inhibit gastric emptying and food intake and that amylin produces satiety in part through inhibition of gastric emptying.  相似文献   

18.
Acute administration of peptide YY(3-36) [PYY(3-36)] results in a reduction in food intake in several different vertebrates. However, long-term continuous administration of PYY(3-36) causes only a transient reduction in food intake, thus potentially limiting its therapeutic efficacy. We hypothesized that a fall in leptin levels associated with reduced food intake could contribute to the transient anorectic effects of continuous PYY(3-36) infusion and thus that leptin replacement might prolong the anorectic effects of PYY(3-36). Seven-day administration of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) using osmotic minipumps caused a significant reduction in food intake of ad libitum-fed rats, but only for the first 2 days postimplantation. Circulating levels of leptin were reduced 1 day following continuous infusion of PYY(3-36), and combined leptin infusion at a dose of leptin that had no anorectic effects on its own (100 microg x kg body wt(-1) x day(-1)) prolonged the anorectic actions of PYY(3-36) in ad libitum-fed rats for up to 6 days postimplantation and yielded reduced weight gain compared with either peptide alone. The inhibitory effects of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) on food intake were absent in rats refed after a 24-h fast and substantially reduced at a dose of 1,000 microg x kg body wt(-1) x day(-1) PYY(3-36). Leptin replacement was unable to recover the anorectic effects of PYY(3-36) in fasted rats. Our results suggest that an acute fall in leptin levels is not solely responsible for limiting duration of action of chronic PYY(3-36) infusion, yet chronic coadministration of a subanorectic dose of leptin can extend the anorectic effects of PYY(3-36).  相似文献   

19.
In the present study, we investigated the influence of blockade of the serotoninergic and histaminergic neurotransmitter system on the anorectic effect of IP-injected amylin in rats. In 12- or 24-h food-deprived rats, blockade of central and peripheral serotonin (5-HT) receptors with the 5-HT1 and 5-HT2 receptor antagonist metergoline (0.5 or 0.05 mg/kg, IP, respectively) did not seem to influence the anorectic effect of IP injected amylin (1 μg/kg). Similarly, inhibition of 5-HT synthesis and release with the 5-HT1A receptor agonist (±)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (200 μg/kg, IP) did not diminish amylin's (5 μg/kg, IP) anorectic effect in 24-h food-deprived rats whereas that of CCK (3 μg/kg, IP) was blocked under comparable conditions. Pretreatment of rats with the histamine H3 receptor agonists R--methylhistamine (MH; 3 mg/kg, IP) and Imetit (3 mg/kg, IP), which block transmission in the histaminergic system by inhibiting release of endogenous histamine, attenuated amylin's (1 μg/kg) anorectic effect in 24-h food-deprived rats. These results suggest that the histaminergic system is involved in transduction of IP amylin's inhibitory effect on feeding in rats. In contrast, the serotoninergic system does not seem to be involved in mediating amylin's anorectic effect.  相似文献   

20.
Piao FL  Cao C  Han JH  Kim SZ  Cho KW  Kim SH 《Regulatory peptides》2004,117(3):159-166
Amylin cosecretes with insulin from pancreatic beta-cells and shows high sequence homology with CGRP, adrenomedullin, and salmon calcitonin. This study aimed to investigate the effect of amylin on the atrial hemodynamics and ANP release from rat atria and to identify its receptor subtypes. Isolated perfused left atria from either control or streptozotocin-treated rats were paced at 1.3 Hz. The concentration of ANP was measured by radioimmunoassay and the translocation of ECF was measured by [3H]-inulin clearance. Rat amylin increased atrial contractility and suppressed the release of ANP. Rat CGRP showed similar effects but was approximately 300-fold more potent than amylin. Pretreatment with receptor antagonist for CGRP1 [rat alpha-CGRP (8-37)] or salmon calcitonin [acetyl-(Asn30, Tyr32)-calcitonin(8-32), (AC 187)] blocked the suppressive effect of ANP release and the positive inotropic effect by rat amylin. However, receptor antagonists for amylin [amylin (8-37), acetyl-amylin] did not block those effects. Amylin (8-37), acetyl-amylin, or rat alpha-CGRP (8-37) alone accentuated the release of ANP with no changes in atrial contractility. The effect of rat amylin and rat amylin (8-37) on the ANP release was attenuated in streptozotocin-treated rats. We suggest that amylin suppressed ANP release with increased atrial contractility through receptors for CGRP1 and salmon calcitonin and the attenuation of amylin and its antagonist on ANP release from streptozotocin-treated rat atria may be due to the downregulation of amylin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号