首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invariant arginine 179, one of four arginines that are conservedin all thymidylate synthases (TS) and that bind the phosphatemoiety of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP),can be altered even to a negatively charged glutainic acid withlittle effect on kcat. In the mutant structures, ordered wateror the other phosphate binding arginines compensate for thehydrogen bonds made by Arg179 in the wild-type enzyme and thereis almost no change in the conformation or binding site of dUMP.Correlation of dUMP Kds for TS R179A and TS R179K with the structuresof their binary complexes shows that the positive charge onArg179 contributes significantly to dUMP binding affinity. kcat/Kmfor dUMP measures the rate of dUMP binding to TS during theordered bi-substrate reaction, and in the ternary complex dUMPprovides a binding surface for the cofactor. kcat/Km reflectsthe ability of the enzyme to accept a properly oriented dUMPfor catalysis and is less sensitive than is Kd to the changesin electrostatics at the phosphate binding site.  相似文献   

2.
The function of aspartic acid residue 101 in the active siteof Escherichia coli alkaline phosphatase was investigated bysite-specific mutagenesis. A mutant version of alkaline phosphatasewas constructed with alanine in place of aspartic acid at position101. When kinetic measurements are carried out in the presenceof a phosphate acceptor, 1.0 M Tris, pH 8.0, both the kcat andthe Km, for the mutant enzyme increase by –2-fold, resultingin almost no change in the kcat/Km ratio. Under conditions ofno external phosphate acceptor and pH 8.0, both the kcat andthe Km for the mutant enzyme decrease by {small tilde}2-fold,again resulting in almost no change in the kcat/Km ratio. Thekcat for the hydrolysis of 4-methyl-umbelliferyl phosphate andp-nitrophenyl phosphate are nearly identical for both the wild-typeand mutant enzymes, as is the K1 for inorganic phosphate. Thereplacement of aspartic acid 101 by alanine does have a significanteffect on the activity of the enzyme as a function of pH, especiallyin the presence of a phosphate acceptor. At pH 9.4 the mutantenzyme exhibits 3-fold higher activity than the wild-type. Themutant enzyme also exhibits a substantial decrease in thermalstability: it is half inactivated by treatment at 49°C for15 min compared to 71°C for the wild-type enzyme. The datareported here suggest that this amino acid substitution altersthe rates of steps after the formation of the phospho-enzymeintermediate. Analysis of the X-ray structure of the wild-typeenzyme indicates that the increase in catalytic rate of themutant enzyme in the presence of a phosphate acceptor may bedue to an increase in accessibility of the active site nearSerl02. The increased catalytic rate of this mutant enzyme maybe utilized to improve diagnostic tests that require alkalinephosphatase, and the reduced heat stability of the mutant enzymemay make it useful in recombinant DNA techniques that requirethe ability to heat-inactivate the enzyme after use.  相似文献   

3.
The genes coding for histidine decarboxylase from a wild-typestrain and an autoactivation mutant strain of Lactobacillus30a have been cloned and expressed in Escherichia coli. Themutant protein, G58D, has a single Asp for Gly substitutionat position 58. The cloned genes were placed under control ofthe ß-galactosidase promoter and the products arenatural length, not fusion proteins. The enzyme kinetics ofthe proteins isolated from E. coli are comparable to those isolatedfrom Lactobacillus 30a. At pH 4.8 the Km of wild-type enzymeis 0.4 mM and the kcat = 2800 min–1; the correspondingvalues for G58D are 0.5 mM and 2750 min–1. The wild-typeand G58D have autoactivation half-times of 21 and 9 h respectivelyunder pseudophysiological conditions of 150 mM K+ and pH 7.0.At pH 7.6 and 0.8 M K+ the half times are 4.9 and 2.9 h. Therelatively slow rate of autoactivation for purified proteinand the differences in cellular and non-cellular activationrates, coupled with the fact that wild-type protein is readilyactivated in wild-type Lactobacillus 30a but poorly activatedin E. coli, suggest that wild-type Lactobacillus 30a containsa factor, possibly an enzyme, that enhances the activation rate.  相似文献   

4.
A mutant form of pyruvate kinase in which serine 384 has beenmutated to proline has been engineered in the yeast Saccharomycescerevisiae. Residue 384 is located in a helix in a subunit interfaceof the tetrameric enzyme, and the mutation was anticipated toalter the conformation of the helix and hence destabilize theinterface. Previous results indicate that the mutant favoursthe T quarternary conformation over the R conformation, andthis is confirmed by the results presented here. Addition ofphosphoenol-pyruvate (PEP), ADP and fructose-1,6-bisphosphate(Fru 1,6-P2) singly to the wild-type and mutant enzymes resultsin a significant quenching of tryptophan fluorescence (12–44%),and for Fru-1,6-P2, a red shift of 15 nm in the emission maximum.Fluorescence titration experiments showed that PEP, ADP andFru-1,6-P2 induce conformations which have similar ligand-bindingproperties in the wild-type and mutant enzymes. However, theFru-1,6-P2 induced conformation is demonstrably different fromthose induced by either ADP or PEP. The enzymes differ in theirsusceptibility to trypsin digestion and N-ethylmaleimide inhibition.The thermal stability of the enzyme is unaltered by the mutantion.Far-UV CD spectra show that both enzymes adopt a similar overallsencondary structure in solution. Taken together, the resultssuggest that the Ser384-Pro mutaion causes the enzyme to adopta diffenrent tertiary and/or quaternary structure from the wild-typeenzyme and affects the type and extent of the conformationalchanges induced in the enzyme upon ligand binding. A simplifiedminimal reaction mechanism is proposed in which the R and Tstates differ in both affinity and Kcat. Thus, in terms of themodels of cooperativity and allsoteric interaction, pyruvatekinase is both a K and a V system.  相似文献   

5.
We have studied the role of Tyr-69 of porcine pancreatic phospholipaseA2 in catalysis and substrate binding, using site-directed mutagenesis.A mutant was constructed containing Phe at position 69. Kineticcharacterization revealed that the Phe-69 mutant has retainedenzymatic activity on monomeric and micellar substrates, andthat the mutation has only minor effects on kcat and Km. Thisshows that Tyr-69 plays no role in the true catalytic eventsduring substrate hydrolysis. In contrast, the mutation has aprofound influence on the stereospecificity of the enzyme. Whereasthe wild-type phospholipase A2 is only able to catalyse thedegradation of sn-3 phospholipids, the Phe-69 mutant hydrolysesboth the sn-3 isomers and, at a low (1–2%) rate, the sn-1isomers. Despite the fact that the stereospecificity of themutant phospholipase has been altered, Phe-69 phospholipasestill requires Ca2+ ions as a cofactor and also retains itsspecificity for the sn-2 ester bond. Our data suggest that inporcine pancreatic phospholipase A2 the hydroxyl group of Tyr-69serves to fix and orient the phosphate group of phospholipidmonomers by hydrogen bonding. Because no such interaction canoccur between the Phe-69 side-chain and the phosphate moietyof the substrate monomer, the mutant enzyme loses part of itsstereospecificity but not its positional specificity.  相似文献   

6.
Two residues, K89 and S380, thought to interact with the -carboxylgroup of the substrate L-glutamate, have been altered by site-directedmutagenesis of clostridial glutamate dehydrogenase (GDH). Thesingle mutants K89L and S380V and the combined double mutantK89L/S380V were constructed. All three mutants were satisfactorilyoverproduced in soluble form. However, only the K89L mutantwas retained by the dye column normally used in purifying thewild-type enzyme. All three mutant enzymes were purified tohomogeneity and tested for substrate specificity with 24 aminoacids. The single mutant S380V showed no detectable activity.The alternative single mutant K89L showed an activity towardsL-glutamate that was decreased nearly 2000-fold compared withwild-type enzyme, whereas the activities towards the monocarboxylicsubstrates -aminobutyrate and norvaline were increased 2- to3-fold. A similar level of activity was obtained with methionine(0.005 U/mg) and norleucine (0.012 U/mg), neither of which giveany activity with the wild-type enzyme under the same conditions.The double mutant showed decreased activity with all substratescompared with the wild-type GDH. In view of its novel activities,the K89L mutant was investigated in greater detail. A strictlylinear relationship between reaction velocity and substrateconcentration was observed up to 80 mM L-methionine and 200mM L-norleucine, implying very high Km values. Values of kcat/Km,for L-methionine and L-norleucine were 6.7x10–2 and 0.15s–1M–1, respectively. Measurements with dithiobisnitrobenzoicacid showed that the mutant enzymes all reacted with a stoichiometryof one -SH group per subunit and all showed protection by coenzyme,indicating essentially unimpaired coenzyme binding. With glutamateor 2-oxoglutarate as substrate the Km values for the vestigialactivity in the mutant enzyme preparations were strikingly closeto the wild-type Km values. Both for wild-type GDH and K89L,L-glutamate gave competitive product inhibition of 2-oxoglutaratereduction but did not inhibit the reduction of 2-oxocaproatecatalysed by K89L enzyme. This suggests that the low levelsof glutamate/2-oxoglutarate activity shown by the mutant enzymeare due to trace contamination. Since stringent precautionswere taken, it appears possible that this reflects the levelof reading error during overexpression of the mutant proteins.CD measurements indicate that the S380V mutant has an alteredconformation, whereas the K89L enzyme gave an identical CD spectrumto that of wild-type GDH; the spectrum of the double mutantwas similar, although somewhat altered in intensity. The resultsconfirm the key role of K89 in dicarboxylate recognition byGDH.  相似文献   

7.
Residue 75 on the flap, a beta hairpin loop that partially coversthe active site cleft, is tyrosine in most members of the asparticproteinase family. Site-directed mutagenesis was carried outto investigate the functional role of this residue in Rhizomucorpusilus pepsin, an aspartic proteinase with high milk-clottingactivity produced by the fungus Rhizomucor pusillus. A set ofmutated enzymes with replacement of the amino acid at position75 by 17 other amino acid residues except for His and Gly wasconstructed and their enzymatic properties were examined. Strongactivity, higher than that of the wild-type enzyme, was foundin the mutant with asparagine (Tyr75Asn), while weak but distinctactivity was observed in Tyr75Phe. All the other mutants showedmarkedly decreased or negligible activity, less than 1/1000of that of the wild-type enzyme. Kinetic analysis of Tyr75Asnusing a chromogenic synthetic oligopeptide as a substrate revealeda marked increase in kcat with slight change in Km, resultingin a 5.6-fold increase in kcat/km. When differential absorptionspectra upon addition of pepstatin, a specific inhibitor foraspartic proteinase, were compared between the wild-type andmutant enzymes, the wild-type enzyme and Tyr75Asn, showing strongactivity, had spectra with absorption maxima at 280, 287 and293 nm, whereas the others, showing decreased or negligibleactivity, had spectra with only two maxima at 282 and 288 nm.This suggests a different mode of the inhibitor binding in thelatter mutants. These observations suggest a crucial role ofthe residue at position 75 in enhancing the catalytic efficiencythrough affecting the mode of substrate-binding in the asparticproteinases.  相似文献   

8.
Nine single amino add mutations in the active site of Aspergillusawamori glucoamylase were made by cassette mutagenesis to alterthe pH dependence of the enzyme and to determine possible functionsof the mutated residues. The Glul79-Asp mutation expressed inyeast led to a very large decrease in kcat but to no changein Km, verifying this residue's catalytic function. Aspl76-Gluand Glul80-Asp mutations affected Km a more than kcat, implyingthat Aspl76 and Glul80 are involved in substrate binding orstructural integrity. The Leul77-Asp mutation decreased kcatonly moderately, probably by changing the position of the generalacid catalytic group, and did not affect Km. The Trpl78-Aspmutation greatly decreased kcat while increasing Km, showingthe importance of Trpl78 in the active site. Vall81-Asp andAsnl82-Asp mutations changed kinetk values little, suggestingthat Vall81 and Asnl82 are of minor catalytic and structuralimportance. Finally, insertions of Asp or Gly between residues176 and 177 resulted in almost complete loss of activity, probablycaused by destruction of the active site structure. No largechanges in pH dependence occurred in those mutations where kineticvalues could be determined, in spite of the increase in mostcases of the total negative charge. Increases in activationenergy of maltoheptaose hydrolysis in most of the mutant glucoamylasessuggested cleavage of individual hydrogen bonds in enzyme-substratecomplexes.  相似文献   

9.
The substitution of aspartate at position 153 in Escherichiacoli alkaline phosphatase by glycine results in a mutant enzymewith 5-fold higher catalytic activity (kcat but no change inKm at pH 8.0 in 50 mM Tris-HCl. The increased kcat is achievedby a faster release of the phosphate product as a result ofthe lower phosphate affinity. The mutation also affects Mg2+binding, resulting in an enzyme with lower metal affinity. The3-D X-ray structure of the D153G mutant has been refined at2.5 Å to a crystallographic Rfactor of 16.2%. An analysisof this structure has revealed that the decreased phosphateaffinity is caused by an apparent increase in flexibility ofthe guanidinium side chain of Argl66 involved in phosphate binding.The mutation of Aspl53 to Gly also affects the position of thewater ligands of Mg2+, and the loop Glnl52–Thrl55 is shiftedby 0.3 Å away from the active site. The weaker Mg2+ bindingof the mutant compared with the wild type is caused by an alteredcoordination sphere in the proximity of the Mg2+ ion, and alsoby the loss of an electrostatic interaction (Mg2+.COO-Aspl53)in the mutant Its ligands W454 and W455 and hydroxyl of Thrl55,involved in the octahedral coordination of the Mg2+ ion, arefurther apart in the mutant compared with the wild-type  相似文献   

10.
The evolutionally conserved aspartyl residues (Asp57, Asp98and Asp152) in human glutathione S-transferase P1-1 were replacedwith alanine by site-directed mutagenesis to obtain the mutants(D57A, D98A and D152A). The replacement of Asp98 with alanineresulted in a decrease of the affinity for S-hexyl-GSH-agarose,a 5.5-fold increase of the KmGHS and a 2.9-fold increase ofthe I50 of S-hexyl-GSH for GSH–CDNB conjugation. Asp98seems to participate in the binding of GSH through hydrogenbonding with the -carboxylate of the -glutamyl residue of GSH.The kcat of D98A was 2.6-fold smaller than that of the wild-type,and the pKa of the thiol group of GSH bound in D98A was {smalltilde}0.8 pK units higher than those in the wild-type. Asp98also seems to contribute to the activation of GSH to some extent.On the other hand, most of the kinetic parameters of D57A andD152A were similar to those of the wild-type. However, the thermostabilitiesof D57A and D152A were significantly lower than that of thewild-type. Asp57 and Asp152 seem to be important for maintainingthe proper conformation of the enzyme.  相似文献   

11.
The thermal stability of two single (K3R, K67R) and one double(K3R-K67R) mutants of Xenopus laevis B Cu,Zn superoxide dismutasehas been studied to test LysArg substitution as an ‘electrostaticallyconservative’ strategy to increase protein stability.The K3R mutant displays an increased thermostability with respectto the wild-type enzyme, whilst a decreased stability was observedin the case of the K67R and K3R-K67R mutants. Concentrationdependence of the apparent inactivation constant (kapp) of thelatter mutants, as compared to that of the wild type enzymeand K3R mutant, indicates that their higher sensitivity to heatinactivation is due to a perturbation of the dimer association.These results are confirmed also by fluorescence anisotropymeasurements of the internal probe Tyr149. The possible roleof Arg67 in perturbing the dimer dissociation equilibrium towardthe monomeric form is discussed.  相似文献   

12.
A chemically synthesized DNA linker coding for a peptide fragmentthat contains four histidines was fused in-frame to the 5'-endof the Bacillus stearothermophilus lactate dehydrogenase gene.The gene product, His4/lactate dehydrogenase, could be purifiedto homogeneity using either immobilized metal (Zn2+)-affinitychromatography or affinity chromatography on oxamate agarose.The stability against heat and urea for the modified enzymeswas decreased as compared to the native lactate dehydrogenasebut could be increased if zinc ions were present during thedenaturation. In the presence of zinc ions the His4/lactatedehydrogenase could catalyse the sequential reaction from oxaloacetateto L-lactate, hence operating as a semi-synthetic bifunctionalenzyme. A small increase in the apparent secondorder rate constant(kcat/Km) of the coupled reaction was observed as compared toa corresponding system with native lactate dehydrogenase.  相似文献   

13.
A mutant of Lactobacillus casei dihydrofolate reductase hasbeen constructed in which Thr63, a residue which interacts withthe 2'-phosphate group of the bound coenzyme, is replaced byalanine. This substitution does not affect kcat, but producesan 800-fold increase in the Km for NADPH, which reflects dissociationof NADPH from the enzyme-NADPH-tetrahydrofolate complex, anda 625-fold increase (corresponding to 3.8 kcal/mol) in the dissociationconstant for the enzyme-NADPH complex. The difference in magnitudeof these effects indicates a small effect of the substitutionon the negative cooperativity between NADPH and tetrahydrofolate.Stopped-flow studies of the kinetics of NADPH binding show thatthe weaker binding arises predominantly from a decrease in theassociation rate constant. NMR spectroscopy was used to comparethe structures of the mutant and wild-type enzymes in solution,in their complexes with methotrexate and with methotrexate andNADPH. This showed that only minimal structural changes resultfrom the mutation; a total of 47 residues were monitored fromtheir resolved 1H resonances, and of these nine in the binarycomplex and six in the ternary differed in chemical shift betweenmutant and wild-type enzyme. These affected residues are confinedto the immediate vicinity of residue 63. There is a substantialdifference in the 31P chemical shift of the 2'-phosphate ofthe bound coenzyme, reflecting the loss of the interaction withthe side chain of Thr63. The only changes in nuclear Overhausereffects (NOEs) observed were decreases in the intensity of NOEsbetween protons of the adenine ring of the bound coenzyme andthe nearby residues Leu62 and Ile102, showing that the substitutionof Thr63 does cause a change in the position or orientationof the adenine ring in its binding site.  相似文献   

14.
The catalytic histidine of human neutrophil elastase was replacedwith alanine (H57A) to determine if a substrate histidine couldsubstitute for the missing catalytic group—`substrate-assistedcatalysis'. H57A and wild-type elastase were recovered directlyfrom Pichia pastoris following expression from a synthetic genelacking the elastase pro sequence, thereby obviating the needfor zymogen activation. Potential histidine-containing substratesfor H57A elastase were identified from a phage library of randomizedsequences. One such sequence, REHVVY, was cleaved by H57A elastasewith a catalytic efficiency, kcat/KM, of 2800 s–1 M–1,that is within 160-fold of wild-type elastase. In contrast,wild-type but not H57A elastase cleaved the related non-histidinecontaining sequence, REAVVY. Ten different histidine-containinglinkers were cleaved by H57A elastase. In addition to the requirementfor a P2 histidine, significant preferences were observed atother subsites including valine or threonine at P1, and methionineor arginine at P4. A designed sequence, MEHVVY, containing thepreferred residues identified at each subsite proved to be amore favorable substrate than any of the phage-derived sequences.Extension of substrate-assisted catalysis to elastase suggeststhat this engineering strategy may be widely applicable to otherserine proteases thereby creating a family of highly specifichistidine-dependant proteases.  相似文献   

15.
A mutant of papain, where an inter-domain hydrogen bond betweenthe side chain hydroxyl group of a serine residue at position176 and the side chain carbonyl oxygen of a glutamine residueat position 19 has been removed by site-directed mutagenesis,has been produced and characterized kinetically. The mutationof Ser176 to an alanine has only a small effect on the kineticparameters, the kcat/Km for hydrolysis of CBZ-Phe-Arg-MCA bythe Serl76Ala enzyme being of 8.1 x 104 /M/s compared with 1.2x 105 /M/s for papain. Serine 176 is therefore not essentialfor the catalytic functioning of papain, even though this residueis conserved in all cysteine proteases sequenced. The pH-activityprofiles were shown to be narrower in the mutant enzyme by upto 1 pH unit at high ionic strength. This result is interpretedto indicate that replacing Ser 176 by an alanine destabilizesthe thiolate—imidazolium form of the catalytic site Cys25-Hisl59residues of papain. Possible explanations for that effect aregiven and the role of a serine residue at position 176 in papainis discussed.  相似文献   

16.
We generated replacement sets for three highly conserved residues,Pro196, Pro197 and His199, that flank the catalytic nucleophile,Cys198. Pro196 and Pro197 have restricted mobility that couldbe important for the structural transitions known to be essentialfor activity. To test this hypothesis we obtained and characterized13 amino acid substitutions for Pro196, 14 for Pro197 and 14for His199. All of the Pro196 and Pro197 variants, except P197R,and four of the His199 variants complemented TS-deficient Escherichiacoli cells, indicating they had at least 1% of wild-type activity.For all His199 mutations, kcat/Km for substrate and cofactordecreased more than 40-fold, suggesting that the conserved hydrogenbond network co-ordinated by His199 is important for catalysis.Pro196 can be substituted with small hydrophilic residues withlittle loss in kcat, but 15- to 23-fold increases in KmdUMP.Small hydrophobic substitutions for Pro197 were most active,and the most conservative mutant, P197A, had only a 5-fold lowerkcat/KmdUMP than wild-type TS. Several Pro196 and Pro197 variantswere temperature sensitive. The small effects of Pro196 or Pro197mutations on enzyme kinetics suggest that the conformationalrestrictions encoded by the Pro–Pro sequence are largelymaintained when either member of the pair is mutated. Received February 24, 2003; revised June 19, 2003; accepted June 20, 2003.  相似文献   

17.
Making tissue-type plasminogen activator more fibrin specific   总被引:2,自引:0,他引:2  
The fibrin specificity of tissue-type plasminogen activatorcan be increased by mutagenesis within at least four sites inthe protease domain. These sites include residue I276, the newN-terminus formed by conversion to a two-chain structure, residueson either side of the active site cleft, KHRR 296–299or DDD 364–366, a charged surface involved in fibrin interactions,which includes residues H432, R434, D460, R462 and a loop structure,PQANL 466–470, near the fibrin-binding patch. Variantswith mutations at any of these sites have low fibrinogen-stimulatedactivity, whereas fibrin-stimulated activity is at least normal.Kinetic analysis reveals that mutations at these positions reducethe kcat in the presence of fibrinogen, but leave the moleculeswith normal kinetic constants in the presence of fibrin. A significantexception is found at positions 296–299, where the presenceof fibrin manifests significant increases in both kcat and Km.Combinations of mutations at these sites appear to be additivewith respect to fibrin specificity.  相似文献   

18.
BM 06.022 is a t-PA deletion variant which comprises the kringle2 and the protease domain. Production of BM 06.022 in Escherichiacoli leads to the formation of inactive inclusion bodies, whichhave to be refolded by an in vitro refolding process to achieveactivity and proper structure of the domains. We analysed thebiochemical properties of BM 06.022 to obtain some informationabout the structure of kringle 2 and the protease as comparedwith the structure of these domains in the intact t-PA molecule.The kinetic analysis of the amidolytic activity of BM 06.022and CHO-t-PA yielded similar values for kcat (13.9 s-1and 11.4s-1for the single chain forms and 33.9 s-1and 27.1 s-1for thetwo chain forms of BM 06.022 and CHO-t-PA, respectively) andfor km, (2.5 mM and 2.1 mM for the single chain forms and 0.5mM and 0.3 mM for the two chain forms of BM 06.022 and CHO-t-PA,respectively). BM 06.022 and CHO-t-PA have the same plasminogenolyticactivity in the absence of CNBr fragments of fibrinogen. However,BM 06.022 has a lower plasminogenolytic activity in the presenceof CNBr fragments of fibrinogen and a lower affinity to fibrinas compared with CHO-t-PA. The affinity of BM 06.022 for fibrinis completely suppressed by 0.3 mM eaminocaproic acid, whilethe intact t-PA has a residual affinity of 30%. The dissociationconstants for the interaction with the lysine analogue e-aminocaprokacid are 0.10 mM and 0.09 mM for BM 06.022 and the intact t-PA,respectively. Furthermore, BM 06.022 and CHO-t-PA are inhibitedby PAI-1 in a similar manner  相似文献   

19.
The likelihood for improvement in the catalytic properties ofEscherichia coli alkaline phosphatase was examined using site-directedmutagenesis. Mutants were constructed by introducing sequencechanges into nine preselected amino acid sites within 10 A ofthe catalytic residue serine 102. When highly conserved residuesin the family of alkaline phosphatases were mutated, many ofthe resulting enzymes not only maintained activity, but alsoexhibited greatly improved tra,. Of –170 mutant enzymesscreened, 5% (eight mutants) exhibited significant increasesin specific activity. In particular, a substitution by serineof a totally invariant AsplOl resulted in a 35-fold increaseof specific activity over wild-type at pH 10.0. Up to 6-foldincreases the kcat/km ratio were observed.  相似文献   

20.
Fungal glucoamylases contain four conserved regions. One regionfrom the Aspergillus niger enzyme contains three key carboxylicacid residues, the general acid catalytic group, Glu179, alongwith Asp176 and Glu180. Three site-directed mutations, Leu177– His, Trp178 – Arg and Asn182 – Ala, wereconstructed near these acidic groups to reveal the functionof other conserved residues in this region. Leu177 and Trp178are strictly conserved among fungal glucoamylases, while anamide, predominantly Asn, always occurs at position 182. Substitutionsof Leu177 or Trp178 cause significant decreases in kcat withthe substrates tested. Similar increases in activation energiesobtained with Leu177 – His with both -(1,4)- and -(1,6)-linkedsubstrates indicate Leu177 is located in subsite 1. KM valuesobtained with the Trp178 – Arg mutation increase for an-(1,6)-linked substrate, but not for -(1,4)-linked substrates.Calculated differences in activation energy between substratesindicate Trp178 interacts specifically with subsite 2. The Asn182 Ala mutation did not change kcat or KM values, indicating thatAsn182 is not crucial for activity. These results support amechanism for glucoamylase catalytic activity consisting ofa fast substrate binding step followed by a conformational changeat subsite 1 to stabilize the transition state complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号