首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential scanning calorimetry (DSC) has been combined with transmission electron microscopy (TEM) to investigate the low-temperature decomposition processes taking place in an Al-5 wt pct Zn-1 wt pct Mg alloy. It was confirmed that two types of GP zones, i.e., GP(I) (solute-rich clusters) and GP(II) (vacancy-rich clusters), formed independently during decomposition of the supersaturated solid solution. The GP(I) zones form at a relatively low aging temperature and dissolve when the aging temperature is increased. The GP(II) zones are stable over a wider range of temperatures. To investigate the nature of the zones in the Al-Zn-Mg alloy, differential scanning calorimetry and transmission electron microscopy have also been carried out on binary Al-Zn alloys containing 5 wt pct and 10 wt pct Zn. In these Al-Zn alloys, GP zones formed rapidly during quenching, and they gave rise to characteristic electron diffraction patterns identical to those from GP(II) in the Al-Zn-Mg alloy system, implying that GP(II) zones in Al-Zn-Mg alloys are very similar to the zones formed in binary Al-Zn alloys. Thus, it is likely that GP(II) zones in Al-Zn-Mg alloys are zinc-rich clusters. In the Al-5 wt pct Zn-1 wt pct Mg alloy, both GP(I) and GP(II) were found to transform to η′ and/or η particles during heating in the differential scanning calorimeter. The η′ was also observed to form after prolonged isothermal aging of the Al-Zn-Mg alloy at 75 °C or after short aging times at 125 °C.  相似文献   

2.
The effects of chromium and copper additions on precipitation in several Al?Zn?Mg alloys have been investigated. Results show that chromium additions heterogenize precipitation in aged Al?Zn?Mg alloys by creating special nucleation sites. Multirowed bands of incoherent precipitates appeared in the grain boundaries and subboundaries in an Al-5 pct Zn-2 pct Mg-0.1 pct Cr alloy. It is believed that fine nuclei associated with the existence of chromium-rich regions are formed during solidification and are retained after solution heat treatment. These nuclei would lead to the formation of incoherent precipitates during quenching and aging. Chromium is, therefore, considered to causehigh temperature nucleation. Copper additions to Al?Zn?Mg alloys accelerate precipitation at lower aging temperatures and increase the density of G. P. zones nucleated at relatively lower temperatures (20 to 90°C). In this way copper considerably strengthens Al?Zn?Mg alloys. Copper, in contrast to chromium, causes increased low-temperature nucleation of G. P. zones.  相似文献   

3.
Effects of low Cu additions (≤0.10 wt pct) and 10 pct predeformation before aging on precipitates’ microstructures and types in a 6060 Al-Mg-Si alloy have been investigated using transmission electron microscopy (TEM). It was found that predeformation enhances precipitation kinetics and leads to formation of heterogeneous precipitate distributions along dislocation lines. These precipitates were often disordered. Cu additions caused finer microstructures, which resulted in the highest hardness of materials, in both the undeformed and the predeformed conditions. The introduced predeformation led to microstructure coarsening. This effect was less pronounced in the presence of Cu. The precipitate structure was studied in detail by high-resolution TEM and high angle annular dark-field scanning TEM (HAADF-STEM). The Cu additions did not alter the respective precipitation sequence in either the undeformed or the predeformed conditions, but caused a large fraction of β″ precipitates to be partially disordered in the undeformed conditions. Cu atomic columns were found in all the investigated precipitates, except for perfect β″. Although no unit cell was observed in the disordered precipitates, the presence of a periodicity having hexagonal symmetry along the precipitate length was inferred from the fast Fourier transforms (FFT) of HRTEM images, and sometimes directly observed in filtered HAADF-STEM images.  相似文献   

4.
The microstructure and properties of three different Al-Zn-Mg-Cu alloys with high Zn content (9 wt pct, 10 wt pct, and 11 wt pct, marked as 9Zn, 10Zn, and 11Zn, respectively) were investigated. The strength of alloys increases as the Zn content increases from 9 wt pct to 10 wt pct, while it does not increase any more as the Zn content increases continuously from 10 wt pct to 11 wt pct. The stress-corrosion cracking (SCC) resistance decreases as the Zn content increases from 9 wt pct to 10 wt pct, while it changes unobviously as the Zn content increases continuously from 10 wt pct to 11 wt pct. The elongation and fracture toughness of alloys decrease as the Zn content increases in these Al-Zn-Mg-Cu alloys. The Zn content has little effect on the precipitation reaction of Al-Zn-Mg-Cu alloys that contain the mixture of GP zones, and η′ are the main Matrix Precipitates (MPt) in the peak-aging state, and the mixture of η′ and η are the main MPt in the over-aging state. The amount of MPt and coarse T (AlZnMgCu) phases are shown to increase with the increasing Zn content in Al-Zn-Mg-Cu alloys. The coarse T phases hardly dissolve into the matrix and are the source for the crack initiation, which may be the responsibility for the negative effect on the properties of high Zn content Al-Zn-Mg-Cu alloys.  相似文献   

5.
The effects of prior cold work and solute (or impurity) content on the dissolution rate of Cu in aqueous cupric ammonium carbonate solutions has been studied. Prior cold work increased the dissolution rate, while solute additions of < 0.15 wt pct decreased the rate. Beyond 0.15 wt pct solute the dissolution rate increased with Ag additions, but it decreased further for an alloy of Cu-Cr-Zr. Observations with scanning electron microscopy and X-ray diffraction indicated that a solute build-up that occurs at the surface during dissolution is of primary importance in controlling the dissolution rate. Formerly Undergraduate Student, Michigan Technological University  相似文献   

6.
The effect of copper on proeutectoid cementite precipitation was investigated by examining the isothermal transformation characteristics of Fe-C and Fe-C-Cu alloys that had comparable carbon contents. The TTT diagrams generated for the Fe-1.43 wt pct C and the Fe-1.49 wt pct C-4.90 wt pct Cu alloys showed that the kinetics of proeutectoid cementite precipitation were not significantly affected by copper. The morphology of the proeutectoid cementite, as seen in the optical microscope, was also substantially the same in both alloys. However, transmission electron microscopy revealed the presence of small epsilon-copper precipitates within the proeutectoid cementite of the copper containing steel. It was concluded that this precipitation of ε-Cu took place at the cementite : austenite interphase boundaries, and that the transport of copper to the precipitates was accomplished by interphase boundary diffusion. The small influence of copper on the kinetics of proeutectoid cementite precipitation is discussed in terms of diffusional growth theories and the structure of the cementite : austenite interphase boundary.  相似文献   

7.
The effect of nitrogen content on stacking fault energy (SFE) has been measured in a series of Fe-21Cr-6Ni-9Mn alloys. Stacking fault energies were determined from node measurements using weak beam imaging techniques in transmission electron microscopy. Nitrogen additions lower the SFE from 53 mJ/m2 at 0.21 wt pct to 33 mJ/m2 at 0.24 wt pct. Further increases to 0.52 wt pct do not markedly change the SFE. Carbon and silicon had no effect on SFE in the ranges 0.010 to 0.060 wt pct C and 0.17 to 0.25 wt pct Si. The shift in SFE from 0.21 to 0.24 wt pct N is accompanied by a transition to a more planar plastic deformation mode. The sharp transition precludes the use of linear regression analysis for relating SFE to nitrogen content in this class of alloys.  相似文献   

8.
Boron additions of up to 75 wt ppm have been observed to improve the room temperature strength and ductility of a Pt + 30 wt pct Rh + 8 wt pct W alloy. Alloys without boron fail intergranularly, and those with 75 wt ppm boron added fail in a mixed intergranular-transgranular mode. Auger electron spectroscopy on intergranular fracture surfaces indicated that boron segregates strongly to grain boundaries in the boron doped alloys. Transmission electron microscopy of alloys with and without boron indicated that both were free of internal precipitates. The observed improvements in strength and ductility appear to be related to boron enrichment within a few atomic distances of the grain boundary.  相似文献   

9.
Published binary phase diagrams and activity data for iron and binary and ternary alloys have been used to evaluate the general linear series expansion of the activity coefficient and the standard free energy changes and these have been employed in turn for the accurate thermodynamic determination of the Ae3 temperature in steels with additions of Mn, Si, Ni, Cr, Mo, and Cu. A computer program accurate for total additions up to 7.0 wt pct and an analytic formula accurate for total additions up to 2.5 wt pct have been developed. The predicted Ae3 temperatures compare favorably with observations on over 200 steels from international compendia. It is demonstrated that existing linear regression formulae are incorrect and that for low alloy additions they should be replaced by linear expressions with carbon concentration dependent coefficients.  相似文献   

10.
A melting and solidification study of alloy 625   总被引:1,自引:0,他引:1  
The melting and solidification behavior of Alloy 625 has been investigated with differential thermal analysis (DTA) and electron microscopy. A two-level full-factorial set of chemistries involving the elements Nb, C, and Si was studied. DTA results revealed that all alloying additions decreased the liquidus and solidus temperatures and also increased the melting temperature range. Terminal solidification reactions were observed in the Nb-bearing alloys. Solidification microstructures in gastungsten-arc welds were characterized with transmission electron microscopy (TEM) techniques. All alloys solidified to an austenitic (γ) matrix. The Nb-bearing alloys terminated solidification by forming various combinations of γ/MC(NbC), γ/Laves, and γ/M6C eutectic-like constituents. Carbon additions (0.035 wt pct) promoted the formation of the γ/MC(NbC) constituent at the expense of the γ/Laves constituent. Silicon (0.4 wt pct) increased the formation of the yJLaves constituent and promoted formation of the γ/M6C carbide constituent at low levels (<0.01 wt pct) of carbon. When both Si (0.4 wt pct) and C (0.035 wt pct) were present, the γ/MC(NbC) and γ/Laves constituents were observed. Regression analysis was used to develop equations for the liquidus and solidus temperatures as functions of alloy composition. Partial derivatives of these equations taken with respect to the alloying variables (Nb, C, Si) yielded the liquidus and solidus slopes t(m L , m S ) for these elements in the multicomponent system. Ratios of these liquidus to solidus slopes gave estimates of the distribution coefficients (k) for these same elements in Alloy 625.  相似文献   

11.
Ni-base superalloys containing high Co (>20 wt pct) and Ti (>5.5 wt pct) were designed in order to study the effects of Co16.9 wt pct Ti addition on phase stability and mechanical property. These new alloys, though they contained high Ti, mainly consisted of γ and γ′ phases. Ni3Ti (η) phase was observed along the grain boundaries in some of the alloys. The formation of η phase was mainly related to the Ti/Al ratio, Ti content, and alloy composition. Tensile and compression tests showed that these new alloys exhibited higher yield stress than that of the baseline alloy, TMW-1(U720LI). The possible strengthening mechanisms were discussed in terms of solid-solution and precipitation strengthening effects by the Co16.9 wt pct Ti additions. Preliminary results show promising trends for the development of new superalloys for turbine disc applications.  相似文献   

12.
The hydrogen-environment embrittlement (HEE)-controlled stage II crack growth rate of AA 7050 (6.09 wt pct Zn, 2.14 wt pct Mg, and 2.19 wt pct Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged (UA), peak-aged (PA), and overaged (OA) conditions were tested in 90 pct relative humidity (RH) air at temperatures between 25 °C and 90 °C. At all test temperatures, an increased degree of aging (from UA to OA) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed an Arrhenius-type temperature dependence, with activation energies between 58 and 99 kJ/mol. For both the normal-copper and low-copper alloys, the fracture path was predominately intergranular at all test temperatures (25 °C to 90 °C) in each temper investigated. Comparison of the stage II HEE crack growth rates for normal- (2.19 wt pct) and low- (0.06 wt pct) copper alloys in the peak PA aged and OA tempers showed a beneficial effect of copper additions on the stage II crack growth rate in humid air. In the 2.19 wt pct copper alloy, the significant decrease (∼10 times at 25 °C) in the stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. In the 0.06 wt pct copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor (v 0), resulting in a modest (∼2.5 times at 25 °C) decrease in the crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II HEE crack growth rates. The OA, copper-bearing alloys are not intrinsically immune to hydrogen-environment-assisted cracking, but are more resistant due to an increased apparent activation energy for stage II crack growth.  相似文献   

13.
Tin-silver-copper eutectic temperature and composition   总被引:2,自引:0,他引:2  
A careful investigation of the Sn-Ag-Cu phase diagram near the ternary eutectic composition was undertaken using annealed alloys and differential scanning calorimetry to settle some uncertainties in the eutectic composition. The eutectic composition was found to be 3.5 wt pct Ag, 0.9 wt pct Cu, and the balance Sn. The published eutectic temperature, 217 °C, was confirmed. A value of 217.2 °C was obtained in the present research.  相似文献   

14.
Combined additions of Ge and Si to Al are known to produce higher precipitation hardening than that which occurs in the constituent binaries, when the total amounts of alloying atoms are the same for all the alloys investigated. In the resultant Al-Ge-Si alloys, the diamond cubic precipitates contain both Ge and Si and are designated as GeSi. During artificial aging at 160 °C, the GeSi precipitates are commonly present in three forms, i.e., equiaxed, 〈100〉Al lath, and triangular plate. The equiaxed form is the dominant one of the three. This article examines the influence of varying amounts (i.e., 2 to 4 wt pct) of Cu additions on the morphology of GeSi precipitates formed in an Al-2.6 wt pct Ge-1.04 wt pct Si alloy during artificial aging at 160 °C. It is shown that Cu additions have the remarkable effect of maximizing the nucleation frequency of the 〈100〉Al lath form and simultaneously suppressing the nucleation of the equiaxed and the plate forms of the GeSi precipitates. Increasing Cu additions also increase the homogeneity and cause refinement of the 〈100〉Al laths. These results are discussed in light of (1) the critical requirement of vacancies for the nucleation and growth of GeSi precipitates having an atomic volume larger than Al and (2) the crystallographic nature of the negative dilation strains that develop locally in the Cu-rich regions of the Al matrix. It is further shown that, in the alloys containing increased levels (i.e., exceeding about 2.5 wt pct) of Cu, the precipitation of ϑ′ (metastable ϑ-Al2Cu) phase occurs, and that the nucleation of Cu-rich ϑ′ precipitates occurs upon the 〈100〉Al laths of GeSi. The latter effect is discussed in terms of the attainment of both the nucleation site and the necessary solute supersaturation at the 〈100〉Al GeSi/α-Al interfaces.  相似文献   

15.
The martensites in Ti-Cu alloys containing up to 8 wt pct Cu have been examined using transmission electron microscopy techniques. The martensite has a massive morphology in the alloys which contain 4 pct Cu or less, whereas the alloys containing 6 and 8 pct Cu exhibit acicular martensite. Experimental evidence is presented to show that the lattice invariant deformation in the massive martensite occurs by internal slip with a Burgers vector and these results are discussed in terms of recent calculations. The transition from the massive to acicular martensite morphology is also discussed. Formerly Pre-Doctoral Research Associate, University of Washington, Seattle, Wash.  相似文献   

16.
Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (<0.2 wt pct) are typically ranging from 80 to 85 kJ/mol, whereas for high-copper-containing alloys (>~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor.  相似文献   

17.
Scrap-based electric arc furnace (EAF) steelmaking is limited by a surface cracking problem in the recycled steel products, which is known as surface hot shortness. This problem originates from the excessive amount of copper (Cu) in the steel scrap, which enriches during the oxidation of iron (Fe) and consequently melts and penetrates into the austenite grain boundaries. In this article, the effects of arsenic (As), antimony (Sb), and tin (Sn) on surface hot shortness were investigated. A series of Fe-0.3 wt pct Cu-x wt pct (As, Sb, or Sn) alloys with x content ranging from 0.06 to 0.10 wt pct was oxidized in air at 1423 K (1150 °C) for 60, 300, and 600 seconds inside the chamber of a thermogravimety analyzer (TGA) where heat is supplied through infrared radiation. Scanning electron microscopy (SEM) investigations show that (1) the presence of Sb and Sn results in severe grain boundary cracking, whereas the presence of As does not, (2) open cracks with Fe oxides were found beneath the oxide/metal interface in the Sb and Sn alloys, and (3) the oxide/metal interfaces for all As, Sb, and Sn alloys are planar. Penetration experiments of pure Cu and Cu-30 wt pct Sn liquid were also conducted in the chamber of a hot-stage confocal laser scanning microscopy (CLSM) in nonoxidizing atmosphere: (1) on the Fe-35 wt pct manganese (Mn) alloys to study the correlation between cracking and grain boundary characters, and (2) on the pure Fe substrates to exclude the bulk segregation effects of Sn on grain boundary cracking. It was found that grain boundary cracking rarely took place on low-energy grain boundaries. The results also suggest that the bulk segregation of Sn in the substrate is not necessary to promote significant grain boundary cracking, and as long as the liquid phase contains Sn, it will be highly embrittling.  相似文献   

18.
The hydrogen-environment embrittlement (HEE)-controlled stage II crack growth rate of AA 7050 (6.09 wt pct Zn, 2.14 wt pct Mg, and 2.19 wt pct Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged (UA), peak-aged (PA), and overaged (OA) conditions were tested in 90 pct relative humidity (RH) air at temperatures between 25 °C and 90 °C. At all test temperatures, an increased degree of aging (from UA to OA) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed an Arrhenius-type temperature dependence, with activation energies between 58 and 99 kJ/mol. For both the normal-copper and low-copper alloys, the fracture path was predominately intergranular at all test temperatures (25 °C to 90 °C) in each temper investigated. Comparison of the stage II HEE crack growth rates for normal- (2.19 wt pct) and low- (0.06 wt pct) copper alloys in the peak PA aged and OA tempers showed a beneficial effect of copper additions on the stage II crack growth rate in humid air. In the 2.19 wt pct copper alloy, the significant decrease (∼10 times at 25 °C) in the stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. In the 0.06 wt pct copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor (v 0), resulting in a modest (∼2.5 times at 25 °C) decrease in the crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II HEE crack growth rates. The OA, copper-bearing alloys are not intrinsically immune to hydrogen-environment-assisted cracking, but are more resistant due to an increased apparent activation energy for stage II crack growth. An erratum to this article is available at .  相似文献   

19.
Effects of Cu content and preaging treatments on precipitation sequence and artificial aging response in aluminum alloy 6022 were investigated using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and hardness tests. It was found that Cu induces the formation of Q and its precursor metastable phases and has a beneficial effect on the kinetics of artificial aging. For the alloy with 0.07 wt pct Cu, the precipitation sequence is GP zones → needlelike β″ → rodlike β′ + lathlike Q′ → β + Si. On the other hand, the precipitation sequence in the alloy with 0.91 wt pct Cu is GP zones → needlelike β′ → lathlike Q′→Q+Si. For the artificial aging condition of 20 minutes at 175 °C, which is the typical automotive paint bake condition, suitable preaging treatments were found to significantly reduce the detrimental effect of the natural aging on artificial aging response.  相似文献   

20.
A thermomechanical processing technique for in creasing the strength of copper alloys is described. Alloys studied include phosphor bronze (5 pct Sn), nickel silver (12 pct Ni-28 pct Zn), tin-modified cupronickel (9 pct Ni-2 pctSn), and Cu?Be (2 pct Be). In this technique, the material is cold-rolled to about 95 pct reduction in thickness followed by heat treatment below the recrystallization temperature. The severe cold work results in increased strenght through strain hardening and texture strengthening, but at the expense of decreased ductility. The terminal heat treatment recovers the ductility while maintaining or increasing the strength imparted by cold work alone. Preliminary results indicate that cold work-accelerated precipitation is chiefly responsible for the strength increase during heat treatment. As a result of the present processing, the copper alloys exhibit higher yield strengths for given amounts of ductility than have heretofore been attained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号