首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We evaluated the performance of whiteleg shrimp Penaeus vannamei (Boone, 1931) in response to different stocking densities and acclimation periods. Shrimp postlarvae were acclimated from seawater (30 g L?1) to low‐salinity well water (<1.0 g L?1) at a constant hourly reduction rate of 40, 60, 80 and 100 h. After acclimation to low‐salinity well water, postlarvae from each acclimation time treatment were stocked in three replicate tanks at densities of 50, 100, 150 or 200 shrimps m?2 for 12 weeks of growth. Salinity averaged <1.0 g L?1 for each growth study. The different treatments resulted in significant differences in both the final body weight and the survival rate (SR). Shrimp acclimated for 100 h showed substantially improved survival (83%) relative to shrimp acclimated for shorter periods. Shrimp yields for all cultured periods ranged from 0.32 kg m?2 in tanks stocked at 50 m?2 to 1.14 kg m?2 in tanks stocked at 200 m?2. We conclude that whiteleg shrimp can be successfully grown in low‐salinity well water, and that the growth, production output and SRs are significantly higher when shrimp are acclimated for longer periods.  相似文献   

2.
The sutchi catfish, Pangasius sutchi (Fowler 1937) was grown at 10 stocking densities in cages suspended in a river‐fed channel during the summer of 2000. Catfish fingerlings (mean length 9.1–9.7 cm and mean weight 5.9–6.7 g) were stocked at densities of 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150 fish m?3. After 150 days, growth and yield parameters were studied and a simple economic analysis was carried out to calculate profitability. The mean gross yield ranged from 15.6±0.27 to 34.5±0.44 kg m?3 and the net yield ranged from 15.2±0.22 to 33.5±0.36 kg m?3 and showed significant variations (P<0.05). The mean weights of fish at harvest were inversely related to stocking density. Both gross and net yields were significantly different and were directly influenced by stocking density but the specific growth rate, survival rate and feed conversion rate were unaffected. Higher stocking density resulted in higher yield per unit of production cost and lower cost per unit of yield. The net revenue increased positively with increasing stocking density. A density of 150 fish m?3 produced the best production and farm economics among the densities tested in this experiment.  相似文献   

3.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

4.
The hypothesis that intraspecific competition affects survival and growth during the culture and harvest at extensive/semi-intensive Penaeus vannamei shrimp ponds was evaluated. Thus, the effect of stocking density on the biomass, shrimp average weight, survival, and economic performance during the culture (133 days) and at the harvest of the P. vannamei shrimp was investigated in 400 m2 earthen ponds. In order to reduce the likelihood of infectious diseases, shrimp received preventive health treatments (probiotics and β-1,3/1,6-glucans) during all culture phases. In this way, the effect of density on the intraspecific competition for space/food was isolated. Ponds stocked at 6, 9, and 12 shrimp m?2 showed competition-dependent growth. Ponds stocked at 12 shrimp m?2 presented a mortality (12 %) between days 76 and 99. Competition, and accordingly individual growth reduction, could have begun at day 76 at a density of 5 shrimp m?2. Survival was significantly higher at 6 shrimp m?2 (84.2 ± 6.2 %) compared with the 12 shrimp m?2 (64.8 ± 12.4 %) treatment, while no significant differences in yield were observed between both treatments. Ponds stocked at 3 and 6 shrimp m?2 presented the best benefit–cost rates. The optimal shrimp density during the experimental culture was 5 shrimp m?2. Given the experimental conditions and considering the fraction of density-independent mortality observed, the optimum stocking density was found to be 6 shrimp m?2.  相似文献   

5.
The performance of the Pacific white shrimp Litopenaeus vannamei (Boone) under various stocking strategies was evaluated in earthen ponds filled with freshwater amended with major ions. Six 0.1‐ha earthen ponds located in Pine Bluff, AR, USA, were filled with freshwater in 2003 and 2004, and potassium magnesium sulphate added to provide 50 mg K+ L?1 and stock salt added to provide 0.5 g L?1 salinity. In 2003, three ponds either were stocked with PL15 shrimp (39 PL m?2) for 125 days of grow out or with PL25 shrimp for 55 days (23 PL m?2) followed by a 65‐day (28 PL m?2) grow‐out period. In 2004, ponds were stocked with 7, 13 or 30 PL15 m?2 for 134 days of grow out. Salinity averaged 0.7 g L?1 during both years, and concentration of SO4?2, K+, Ca2+ and Mg2+ was higher, and Na+ and Cl? was lower in amended pond water than in seawater at 0.7 g L?1 salinity. Potassium concentration in amended water was 52–61% of the target concentration. Shrimp yields ranged from 3449 kg ha?1 in 2003 to 4966 kg ha?1 in 2004 in ponds stocked with 30–39 PL15 m?2 for a 125–134‐day culture period. At harvest, mean individual weight ranged from 17.1 to 19.3 g shrimp?1. In ponds stocked with PL25 shrimp, yields averaged 988 and 2462 kg ha?1 for the 1st and 2nd grow‐out periods respectively. Gross shrimp yield in 2004 increased linearly from 1379–4966 kg ha?1 with increased stocking rate. These experiments demonstrated that L. vannamei can be grown successfully in freshwater supplemented with major ions to a final salinity of 0.7 g L?1.  相似文献   

6.
To address the preference of mud crab farmers for larger size Scylla serrata juveniles (5.0–10 g body weight or BW; 3.0–5.0 cm internal carapace width or ICW), a study was conducted to compare the growth and survival of crab juveniles (2.0–5.0 g BW; 1.0–3.0 cm ICW) produced a month after stocking of megalopae in net cages when reared further in net cages installed in earthen ponds or when stocked directly in earthen ponds. In a 3 × 2 factorial experiment, three stocking densities (1, 3 and 5 ind m−2), two types of rearing units (net cages or earthen pond) were used. Megalopae were grown to juvenile stage for 30 days in net cages set inside a 4000 m2 brackishwater pond and fed brown mussel (Modiolus metcalfei). Crab juveniles were then transferred to either net cages (mesh size of 1.0 mm) or earthen ponds at three stocking densities. After 1 month, no interaction between stocking density and rearing unit was detected so data were pooled for each stocking density and rearing unit. There were no significant differences in the growth or survival rate of crab juveniles across stocking density treatments. Regardless of stocking density, survival in net cages was higher (77.11±6.62%) than in ponds (40.41±3.59%). Growth, however, was significantly higher for crab juveniles reared in earthen ponds. The range of mean BW of 10.5–16.0 g and an ICW of 3.78–4.33 cm obtained are within the size range preferred by mud crab operators for stocking grow‐out ponds.  相似文献   

7.
We examined the potential for producing the large numbers of sandfish (Holothuria scabra) needed for restocking programmes by co-culturing juveniles with the shrimp Litopenaeus stylirostris in earthen ponds. Our experiments in hapas within shrimp ponds were designed to detect any deleterious effects of sandfish on shrimp, and vice versa. These experiments showed that a high stocking density of juvenile sandfish had no significant effects on growth and survival of shrimp. However, survival and growth of sandfish reared with shrimp for 3 weeks were significantly lower than for sandfish reared alone. Increased stocking density of shrimp also had a significant negative effect on survival and/or growth of sandfish. A grow-out trial of juvenile sandfish in 0.2-ha earthen ponds stocked with 20 shrimp post-larvae m− 2, and densities of sandfish between 0.8 and 1.6 individuals m− 2, confirmed that co-culture is not viable. All sandfish reared in co-culture were dead or moribund after a month. However, sandfish stocked alone into 0.2-ha earthen ponds survived well and grew to mean weights of ∼ 400 g within 12 months without addition of food. The grow-out trial demonstrated that there is potential for profitable pond farming of sandfish in monoculture. Further research is now needed to identify the optimal size of juveniles, stocking densities and pond management regimes.  相似文献   

8.
Growth and survival of hatchery‐bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m?3 in tanks and 114, 228 and 457 fry m?3 in ponds. Fish were fed a formulated diet throughout the 28‐day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3–14.6% day?1, than those in cages suspended in tanks (SGR range 9–11.3% day?1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m?3 were similar to each other but were significantly lower than those of fish held at 114 m?3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m?3 in tanks and at 114 m?3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3–4 cm total length for stocking in grow‐out culture can still be attained at stocking densities of 457 m?3 in nursery pond and 571 m?3 in tanks.  相似文献   

9.
Applied ethology can help to improve Litopenaeus vannamei aquaculture. Our purpose was to demonstrate an influence of stocking density on behaviour. The shrimp were first distributed in aquaria and observed via an ad libitum observational method to construct an ethogram of social and feeding behavioural categories. The resulting ethogram consisted of retreat, cannibalism, getting to the feeding tray, occupying the feeding tray and getting feed. We then kept shrimp in aquaria at densities of 50, 75 and 100 animals m?2 and observed them via a behavioural sampling method using our ethogram as well as focal animal sampling of behaviours derived from the literature. These literature‐derived behaviours consisted of inactivity, feeding, crawling, exploration, burying, swimming and cleaning. We found that stocking density affects the behaviour of the shrimp. Optimal searching and feeding and a low frequency of crawling and swimming occurred at a density of 50 animals m?2, indicating a higher potential for growth and welfare at this density.  相似文献   

10.
We investigated the effects of the stocking density of white shrimp (Litopenaeus vannamei) on shrimp and tilapia growth and nutrient conversion in an integrated closed recirculating system both with and without Nile tilapia (Oreochromis niloticus). A 2 × 3 factorial design involving tilapia presence/absence and shrimp stocking densities of 40, 80 and 120 m?2 was applied, using a tilapia:shrimp ratio of 0.025. There were no significant interactions between tilapia presence and shrimp stocking density in terms of shrimp growth performance or feed utilization. The presence of tilapia had no effect on the shrimp growth rate, survival rate or total weight gain (%). Shrimp growth declined significantly with increased shrimp stocking density, but the growth of tilapia was not significantly different among the three shrimp densities tested. The conversion of feed nitrogen and phosphorus into total harvested animal biomass was significantly higher in the presence than in the absence of tilapia. The nutrient conversion rate at the lowest shrimp density (40 m?2) was significantly higher than at the highest density tested (120 m?2).  相似文献   

11.
Experiments on the intensive cultivation of Pacific white shrimp, Penueus vunnumei, in ponds in South Carolina were begun in 1985 at the Waddell Mariculture Center. A preliminary study involved two 0.1 ha ponds stocked at an average of 43 postlarvae/m2, with management practices based on those used in Taiwan for intensive pond culture of Penueus monodon. Harvest yields averaged 6,757 kg/ha for one crop, demonstrating the technical feasibility of such intensive culture of P. vannumei. In 1986, 2.5 ha of ponds at the Waddell Center (six ponds totaling 2.0 ha at 40 postlarvae/m2 and two totaling 0.5 ha at 60/m2) yielded a total of 13,606 kg (5,442 ke/hn). These results were obtained even though aeration and water exchange rates were substanthlly reduced and South Carolina experienced its worst heat wave and drought. This served as a pilot-sde, proof-ofconcept test. Tank studies in 1985 and 1986 showed little effect of stocking density on shrimp growth rate at densities of 20–100 animals/m2. This was confirmed in ponds in 1987 when no differences in growth rates were observed at densities of 20–100 postlarvae/m2. Harvest biomass increased directly with stocking density in all trials, reaching a maximum of 12,680 kg/ha/crop at 100 shrimp/m2 in 1987. Initial attempts to intensify production in the nascent South Carolina shrimp farming industry occurred in 1986, when approximately 32 ha of private ponds were stocked at densities of 10–32 postlarvae/m2. Farm harvests increased with stocking density, with maximum yield of 3,656 kg/ ha/crop. This trend toward intensification in the private sector is continuing, and in 1987 maximum harvests from private ponds were 5,050 kg/ha from a 0.3 ha pond and 4,625 kg/ha from a 1.5 ha pond. Prospects for further implementation of intensive culture in the private sector appear excellent, with yields of ≥ 10,000 kg/ha/crop expected from private farms within the next few years.  相似文献   

12.
13.
This study was conducted to investigate the effect of stocking density (125 or 200 fish m?3) on the growth performance of three strains of the Nile tilapia, Oreochromis niloticus: the non‐improved strain (NS), the genetically improved farmed tilapia (GIFT) and the Freshwater Aquaculture Center selected tilapia known as the FaST selected line (SL). Each strain and density combination was triplicated in 0.42 m3 fibreglass tanks within a re‐circulating water system. Water temperature was maintained at 29.0±1.0°C. Large Nile tilapia having a mean body weight of 100–110 g were stocked in each tank and hand‐fed four times daily with commercial tilapia pellets (35% protein) for 104 days. Results showed that at the two stocking densities, the GIFT and SL strains showed a significantly higher (P<0.05) mean weight (MWT), daily growth rate (DGR), specific growth rate (SGR), feed conversion ratio (FCR) and gross yield (GY) than the NS. In all three strains, growth performance was negatively affected by stocking density. The lower density (125 fish m?3) treatments had significantly higher MWT, DGR and SGR than the higher density one (200 fish m?3). However, higher FCR and GY were observed at the higher density. Survival rates were high in all treatments and were not affected by strain or density. In general, the SL strain had better growth parameters than the GIFT strain. The findings of this study demonstrated the superior growth performance of the improved strains at both densities compared with the NS. The higher density (200 fish m?3) could be more profitable for the tilapia farms in Kuwait than the lower density of (125 fish m?3) in terms of reduced land cost and facilities, demand on the limited low‐salinity underground water and manpower.  相似文献   

14.
ABSTRACT

The present on-farm study assessed the effect of different stocking densities on growth, production, and financial benefits of African sharptooth catfish (Clarias gariepinus) in earthen ponds for 180 days. Low stocking density (LSD), medium stocking density (MSD), and high stocking density (HSD) of 3, 6, and 9 fish m?2, respectively, were tested. C. gariepinus stocked at LSD and MSD showed significantly higher weight gain, specific growth rate, and final mean weight than those cultured at HSD (P < .05). There was a significant linear relationship between the stocking density and the yields and financial variables (P < .05). Net fish yields were significantly higher for C. gariepinus reared at HSD and MSD than those stocked at LSD (P < .05). Similarly, C. gariepinus raised at MSD and HSD generated significantly more profit than those cultured at LSD (P < .05). Results demonstrated that farmers can achieve high net yield and financial benefits by stocking C. gariepinus at HSD of 9 fish m?2.  相似文献   

15.
Asian river catfish (Pangasius bocourti Sauvage, 1880) were cultured at five different stocking densities in cages (submerged volume 1 m3) suspended in a dugout pond from August to November 2009. Pangasius bocourti fingerlings (mean weight 27.09 ± 0.54 g) were stocked at densities of 12, 25, 50, 100, and 200 fish m−3. At the end of 3 months, the harvest weights (gross yields) were, respectively, 2.05 ± 0.30, 5.20 ± 0.31, 10.60 ± 0.42, 19.98 ± 0.78, and 42.37 ± 0.41 kg m−3. The mean fish weights among the stocking densities of 25, 50, 100, and 200 fish m−3 were not significantly different, but were significantly higher than that of the 12 fish m−3 density. The specific growth rates among high stocking densities of 50, 100, and 200 fish m−3 were not significantly different; however, they were significantly higher than those of the low stocking densities of 12 and 25 fish m−3. Asian river catfish performed poorly at the lowest density. The results indicate an initial lower stocking threshold for Asian river catfish of above 5.20 kg m−3. The Asian river catfish cultured in small cages placed in a pond reached the desirable market size (>200 g) within a 90-day grow-out period. The results show that the maximum yield for Asian river catfish during a 3-month production cycle was not reached.  相似文献   

16.
This study was designed to determine the production characteristics of the Pacific white shrimp, Litopenaeus vannamei, stocked into grow‐out ponds at three different sizes and ages. To meet this goal, three groups of postlarvae (PL) were obtained. The first group was placed in a nursery system for 21 d (N21), the second for 14 d (N14), and the third was stocked directly into ponds (DS). Shrimp from each nursery treatment (three tanks per treatment) were pooled and then subdivided for stocking into four replicate 0.1 ha ponds per treatment, another four ponds were stocked directly (DS) with PL8. All 12 ponds were stocked on the same day at a density of approximately 35 PL/m2, and cultured over a 16‐wk period and then drain harvested. After harvest, mean average weights (15.4, 16.9, and 14.9 g), survivals (63, 62, and 64%), FCRs (2.7, 2.5, and 2.7), and average yields (3592, 4005, and 3374 kg/ha) were determined for N21, N14, and DS, respectively. No significant (P > 0.05) differences were observed among treatments. Regardless of nursing time, nursed juveniles did not differ significantly in production characteristics from shrimp stocked directly from the hatchery.  相似文献   

17.
Slow growth and losses to bird predation and infectious diseases in winter can compromise the profitability of silver perch farming. To evaluate over‐wintering silver perch (Bidyanus bidyanus) in a recirculating aquaculture system (RAS), fingerlings (38 g) were stocked in either cages in a pond at ambient temperatures (10–21 °C) or tanks in the RAS at elevated temperatures (19–25 °C) and cultured for 125 days. Mean survival (96%), final weight (146 g), specific growth rate (1.07% day?1) and production rate (28.1 kg m?3) of fish in the RAS were significantly higher than for fish over‐wintered in cages (77%, 73 g, 0.53% day?1, 11.1 kg m?3). Fish from both treatments were then reared in cages for a further 129 days. Final mean weight of fish originally over‐wintered in the RAS was 426 g, while fish over‐wintered in cages were only 273 g. To determine optimal stocking densities, fingerlings (11.8 g) were stocked at 500, 1000 or 1500 fish m?3 in tanks in the RAS and cultured for 124 days. Survival was not affected, but growth was significantly slower and feed conversion ratio higher at 1500 fish m?3 compared with 500 or 1000 fish m?3. Results demonstrate that over‐wintering silver perch in an RAS can produce large fingerlings for grow‐out in early spring. This strategy could eliminate bird predation, reduce losses to diseases and shorten the overall culture period.  相似文献   

18.
An experimental trial was conducted for 90 days to evaluate the growth performance, immunophysiological response of GIFT strain of Tilapia in biofloc‐based rearing system and to assess the relative percentage survival in 3 days after challenging with the virulent strain of Aeromonas hydrophila. Fingerlings with an average body weight 0.98 ± 0.06 g were stocked in triplicate at different stocking densities of 200 (SD1), 250 (SD2), 300 (SD3) and 350 (SD4) m?3 in biofloc‐based treatments and 150 (C) m?3 in control (clear water). Biofloc‐based units (SD1 and SD2) obtained significantly better (P < 0.05) growth performances at the end of the experimental period. Mean body weight of fish in biofloc‐based units showed a decreasing trend with increase in stocking density with 100% survival in all units including control. The stress parameters were significantly lower in biofloc‐based rearing units especially in treatments SD1 and SD2 as compared to the control. The fish from the biofloc‐based units (SD1 and SD2) possessed significantly (P < 0.05) higher immune status as compared to control and other biofloc treatments in terms of respiratory burst, serum lysozyme and myeloperoxidase activity. Relative survival percentages were significantly better in biofloc treatments with highest in SD1 and SD2 (83.33%) after challenge study. GIFT strain of Tilapia at higher stocking densities 200–250 nos m?3 can be taken as optimum stocking density whereas higher stocking densities up to 350 nos m?3 can be reared in the biofloc systems without compromising the growth and immunity.  相似文献   

19.
An experiment was conducted for 80 days at La Salada de Monasterio Lake (Buenos Aires, Argentina) to assess the effect of stocking density and natural food availability on the growth and production of zooplanktivorous juveniles of pejerrey (Odontesthes bonariensis) in extensive cage culture. Ten cages were installed and stocked with 33‐day‐old fish, at three density treatments: 25, 50 and 75 ind. m?3. Zooplankton was analysed in terms of abundance, biomass and diversity considering three size classes. Caged pejerrey diet was assessed regularly. The pejerrey gut contents composition was clearly different from cage zooplankton, showing a trend to contain bigger components. Reared fish exhibited a tendency to diversification of the diet and to change the mean prey size depending on fish length and stocking density. Regression models showed a positive and direct effect of the bigger zooplankton biomass on fish growth rates, which were also inversely affected by the availability of smaller zooplankton. The results demonstrate that stocking density and available zooplankton, in both quantity and quality, are key factors in regulating extensive cage culture of pejerrey. Handling stocking densities in a dynamic way it is possible to maximize fish growth, biomass harvest or fish number according to the goals of production.  相似文献   

20.
During 1978–1980, 18 rearing trials were conducted in 0.25 ha ponds to examine the effects of various stocking strategies on production and economic potential. The strategies tested consisted of stocking: post-larvae only; a mixed population of postlarvae plus juveniles; small juveniles only, at densities ranging from 2.15–8.61 prawns/m2. Prawns were fed Purina Marine Ration 25 once daily and seine-sampled at 4-week intervals throughout the 144–168 day rearing periods. Clear relationships between population structure of the stocked prawns and density versus crop yields and estimated revenues were demonstrated. The stocking of postlarvae resulted in lower production levels and less valuable prawns as compared to stocking a mixture of postlarvae + juveniles or juveniles only populations. Also, survival was more variable (range 59.3–84.5%) and lower (mean 69.6%) when postlarvae were stocked. Greater crop yields were achieved at higher densities, however, mean size and unit value of the crop decreased as density increased. Feed conversions were low and averaged 1.4 (range 0.8–2.2) for all trials combined. Preliminary economic feasibility analyses of the various stocking strategies were performed for situations where ponds and associated facilities were already available. The analyses suggested that positive net revenues were possible if a mixed population of postlarvae and juveniles or juveniles only were stocked at about 6.5/m2 and seed costs were ∑30/1,000 and the crop was marketed as a combination of large whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号