首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用分子标记构建新疆野苹果核心种质的方法   总被引:8,自引:3,他引:5  
 【目的】探讨分子水平构建核心种质的方法,为新疆野苹果核心种质的构建提供方法。【方法】以109个新疆野苹果实生株系的128个SSR位点为材料,根据Nei &; Li、SM和Jaccard遗传距离,采用UPGMA聚类法进行多次聚类,以随机取样策略为对照取样策略,应用位点优先取样策略,研究新疆野苹果核心种质构建的方法。采用丢失的等位基因数以及对Nei’s基因多样度和香农信息指数进行t检验来评价核心种质的代表性。【结果】与对照随机取样策略比较,位点优先取样策略能构建一个更有代表性的核心种质。SM、Jaccard和Nei &; Li遗传距离构建的新疆野苹果核心种质无明显区别。采用SRAP数据和表型数据分析显示,位点优先取样策略是一种较好的构建新疆野苹果核心种质的方法。【结论】采用位点优先法,根据SM、Jaccard或Nei &; Li遗传距离进行多次聚类,是较适宜的构建新疆野苹果核心种质的方法。  相似文献   

2.
利用ISSR分子标记构建新疆野杏核心种质资源   总被引:10,自引:0,他引:10  
刘娟  廖康  赵世荣  曹倩  孙琪  刘欢 《中国农业科学》2015,48(10):2017-2028
【目的】通过对不同取样策略和遗传距离相结合的组合结果进行分析对比,以此探讨分子水平构建新疆野杏核心种质的方法,确定最适核心种质资源,以利于种质的保护与利用。【方法】以分布于新疆伊犁地区霍城县大西沟、新源县博尔赛和巩留县伊依克台3个分布区的135个新疆野杏实生株系为材料,根据SM、Jaccard和Nei&Li遗传距离,采用UPGMA聚类法对新疆野杏整体进行多次聚类抽样,直到其中某个采样点再次聚类时无种质被抽取;以随机取样策略为对照取样策略,应用位点优先取样策略,研究新疆野杏核心种质构建的方法;采用丢失的等位基因数以及多态性位点数、多态性位点百分率、观测等位基因数、有效等位基因数、Nei’s遗传多样性指数和Shannon信息指数各遗传多样性指标进行t检验来确定最适构建方法;分别将核心种质与原种质和保留种质进行t检验和遗传多样性比较,以此来评价核心种质的代表性;并用主坐标轴分析法和表型性状对原种质和核心种质进行分析,以此对核心种质进行确认。【结果】位点优先取样策略构建的核心种质比对照随机取样策略丢失的多态性位点数少,且同一遗传距离下位点优先取样策略构建的核心种质具有较高的遗传多样性,更能构建一个具有代表性的核心种质;通过Nei & Li遗传距离构建的新疆野杏核心种质各遗传多样指标具有较大值,优于SM和Jaccard遗传距离;采用主坐标轴分析法和表型数据分析显示,利用位点优先取样策略和Nei & Li遗传距离构建的新疆野杏核心种质能够较全面的代表野杏原种质的遗传多样性;31份野杏核心种质资源,保留了原种质22.96%的样品,多态性位点、多态性位点百分率、观测等位基因数、有效等位基因数、Nei’s遗传多样性指数和Shannon信息指数的保留率分别达到92.69%、98.83%、99.42%、103.26%、109.24%和108.31%。【结论】采用位点优先法和Nei & Li遗传距离进行多次聚类,是较适宜的构建新疆野杏核心种质的方法,构建的31份核心种质能最大程度代表原种质的遗传多样性,同时本研究所采用的方法对其他作物核心种质的构建具有重要的参考价值。  相似文献   

3.
利用数量性状构建新疆野苹果核心种质的方法   总被引:8,自引:3,他引:5  
 【目的】以300份新疆野苹果实生株系为试验材料,根据叶片、花朵和果实等器官15个数量性状的遗传多样性,研究新疆野苹果核心种质构建的方法。【方法】采用逐步聚类法,以30%的取样比例,根据2种遗传距离(欧氏距离和马氏距离)、4种系统聚类方法(类平均法、离差平方和法、最长距离法和最短距离法)和3种取样方法(随机取样法、偏离度取样法和优先取样法)构建24个核心种质,以筛选出的最佳构建策略进一步比较7种不同取样比例(10%、15%、20%、25%、30%、35%和40%)的构建效果以确定最适宜的取样比例。【结果】(1) 在新疆野苹果构建中,采用欧氏距离聚类优于马氏距离。(2) 4种系统聚类方法比较表明,最短距离法优于类平均法、离差平方和法和最长距离法。(3) 3种取样方法比较表明,优先取样法和偏离度取样法都能明显提高核心种质的方差差异百分率、极差符合率和变异系数变化率,均适宜于新疆野苹果核心种质的构建,前者略优于后者。(4)20%是最适宜的取样比例。【结论】以20%的取样比例,采用欧氏距离,利用最短距离法进行逐步聚类,结合优先取样法构建的核心种质最有代表性,是构建新疆野苹果核心种质的最佳方法。  相似文献   

4.
基于表型和SSR分子标记构建芝麻核心种质   总被引:1,自引:0,他引:1  
【目的】便于管理、研究和利用芝麻种质资源,为芝麻育种提供优异基因资源。【方法】利用新收集和种质库保存的5 020份芝麻种质资源为基础,首先基于标准化的表型数据按地理来源分组后采用组内比例法聚类抽样构建初级核心种质,然后基于SSR分子标记应用位点优先取样策略逐步聚类,使用t检验检测每次聚类形成的核心种质与初级核心种质的Nei’s基因多样度(He)和Shannon-Wiener指数(I),直到核心种质的遗传多样性与初级核心种质开始有显著差异时,终止多次聚类取样,选择上一个与初级核心资源没有显著差异的核心种质作为最佳核心种质。利用Nei’s多样性指数、Shannon-Wiener多样性指数、多态条带百分率(PB,%)、多态条带保留率(PBR,%)、变异系数符合率(VR)、极差符合率(CR)、方差差异百分率(VD,%)、均值差异百分率(MD,%)等参数进行核心种质代表性检验和评价。【结果】构建了含有816份资源的初级核心种质和含有501份资源的核心种质,分别占全部种质资源的16.25%和9.98%;核心种质包括国内资源442份,国外资源59份;Nei's基因多样度(0.2789)和Shannon-Wiener指数(0.4243)在P0.05概率条件下与初级核心资源(He=0.2791,I=0.4302)无显著性差异,多态条带百分率(PB,%)、多态条带保留率(PBR,%)、变异系数符合率(VR)、极差符合率(CR)分别为91.25%、95.23%、99.14%、86.85%。方差差异百分率(VD,%)和均值差异百分率(MD,%)均为0。t测验结果表明,核心种质的遗传多样性指数与原始种质差异不显著。位点优先取样策略构建的核心种质比对照随机取样策略丢失的多态性位点数少,且同一遗传距离下位点优先取样策略构建的核心种质具有更高的遗传多样性,更能构建一个具有代表性的核心种质,Shannon-Wiener多样性指数比Nei’s多样性指数检测效率高。【结论】基于地理来源分组,组内按表型数据聚类按比例法抽样构建芝麻初级核心种质,再结合SSR分子标记数据,采用SM相似系数进行UPGMA逐步聚类是构建芝麻核心种质较适宜的方法,所构建的核心种质较好地代表了基础种质的遗传多样性。  相似文献   

5.
为科学利用现有板栗种质资源并对其进行高效管理和保存。本研究利用简单重复序列(SSR)标记,采用非加权算数平均聚类法(UPGMA)对来自12个省(市或自治区)的279份板栗种质进行多次聚类抽样。聚类抽样时将2种遗传相似系数(SM系数和Dice系数)和2种取样方法(随机取样法和位点优先取样法)分别组合获得不同样本群,再比较不同样本群的有效等位基因数(Ne)、Nei’s多样性指数(H)和Shannon’s信息指数(I),研究构建板栗初级核心种质的适宜方法,并采用t检验和主坐标分析评价初级核心种质的代表性,结合表型特征对其进行确认。结果表明:应用位点优先取样法取得的种质比随机取样法具有更高的Ne、HI;应用SM相似性系数构建的核心样本,其遗传多样性指标要优于Dice相似性系数;根据主坐标结合形态学指标分析,利用位点优先取样法和SM相似性系数经过3次聚类构建了68份板栗初级核心种质,保留了原种质24.37%的样品,Ne、HI分别为1.539、0.329和0.502,均高于原种质各遗传多样性指标,能够较全面的代表整个板栗资源的遗传多样性。综上,基于SSR标记利用SM系数聚类,并结合位点优先取样法是构建板栗初级核心种质较适宜的方法。  相似文献   

6.
葡萄核心种质的构建   总被引:6,自引:1,他引:5  
【目的】在已建立的葡萄初级核心种质的基础上,利用SSR分子标记技术构建葡萄核心种质。【方法】利用M策略(Core Finder和Power Core)、遗传距离法(least distance stepwise sampling,LDSS和genetic distance optimization,GDOPT)和Core Hunter法构建核心种质, 并对He、Ho和 I值等遗传多样性指数和方差差异百分率(VD%)、均值差异百分率(MD%)、极差符合率(CR%)和变异系数变化率(VR%)等表型指标进行统计检验,同时采用SSR和SRAP分子标记的主坐标分析对其进行确认。【结果】M策略构建的核心种质能保留初级核心种质全部的等位基因,遗传距离法抽取的核心种质对原始种质具有较好的代表性。为使所构建的核心种质具有最大的遗传距离和最大的遗传多样性,对M策略、遗传距离法和Core Hunter法构建的核心种质进行了合并,48份葡萄核心种质以最少的种质材料保留了初级核心种质96.21%的等位基因,以5.53%的取样比例代表了原始整体种质92.90%的遗传多样性。【结论】经分子和表型检验,所构建的核心种质具有较好的代表性和遗传多样性。同时本研究所采用的方法对其它作物核心种质的构建具有重要的参考价值。  相似文献   

7.
利用数量性状构建粳稻核心种质的方法比较   总被引:1,自引:0,他引:1  
以250份粳稻为研究材料,根据7个数量性状的基因型预测值,研究粳稻核心种质构建的方法。采用2种遗传距离(欧氏距离和马氏距离),8种聚类方法(最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法),3种取样方法(随机取样法、偏离度取样法和优先取样法),在25%的取样比例下构建48个核心种质,以筛选出的最佳构建策略进一步比较6种不同取样比例(10%、15%、20%、25%、30%和35%)的构建效果以确定最适宜的取样比例。结果表明,在粳稻核心种质构建中,马氏距离优于欧氏距离。欧氏距离优先取样法下最短距离法构建的核心种质最优。马氏距离偏离度取样法构建的核心种质能较多保存原群体遗传变异。10%是最适宜的取样比例。  相似文献   

8.
白桦核心种质构建的抽样方法   总被引:1,自引:0,他引:1  
以白桦种质资源240个家系的胸径、树高、材积和纤维素含量数据为依据,在采用马氏距离计算家系间距离、不加权类平均聚类法和10%的抽样比例下,研究了多次聚类随机抽样法、多次聚类优先取样法和多次聚类偏离度取样法构建的核心种质遗传参数、聚类结果和分布格局.结果表明,多次聚类优先取样法构建的核心种质最能代表原种质群体.  相似文献   

9.
海巴戟核心种质的构建方法   总被引:1,自引:0,他引:1  
以126份海巴戟种质资源为材料,利用生物学性状、农艺学性状、SRAP分子标记等遗传多样性数据,采用逐步聚类法,开展海巴戟核心种质构建机制的研究。结果表明:海巴戟核心种质的最佳构建方法为Average系统聚类,G策略取样,15%的组内取样比例。应用该构建方法初步构建了由21个不同种质株系构成的海巴戟核心种质,该核心种质能够代表原种质的遗传多样性。  相似文献   

10.
苦瓜核心种质资源构建方法的比较   总被引:1,自引:0,他引:1  
【目的】通过比较不同方法构建的苦瓜Momordica charantia核心种质资源的优劣,选择能代表原群体遗传多样性的核心种质,为苦瓜种质资源的高效利用提供依据。【方法】采用混合线性模型对154份苦瓜种质的第1雌花节位、瓜纵径、瓜橫径、瓜肉厚和单瓜质量等5个性状的基因型值进行无偏预测;基于性状的基因型预测值,采用马氏距离计算苦瓜种质间的遗传距离;通过8种聚类方法和3种抽样方法,按照30%的抽样率构建苦瓜核心种质资源,评价不同聚类方法和抽样方法构建苦瓜核心种质的优劣。【结果】8种聚类方法构建的核心种质所有5个性状的变异系数均高于原群体;最短距离法构建的苦瓜核心种质5个性状的方差和变异系数均高于原群体,明显优于其他7种聚类方法。优先抽样法和偏离度抽样法构建的核心种质的极差与原群体一致,但偏离度抽样法构建的苦瓜核心种质有3个性状的变异系数高于其他2种抽样法,表明偏离度抽样法略优于随机抽样法和优先抽样法;基于马氏距离、偏离度抽样法及最短距离法获得了46份苦瓜核心种质,其中,Y5、Y87、Y112和Y139为苦瓜骨干材料。【结论】基于马氏距离、偏离度抽样法及最短距离法获取的46份苦瓜核心资源能够代表原群体的遗传多样性。本研究进一步证实了来源于印度及东南亚地区的苦瓜种质具有丰富的遗传多样性,为苦瓜种质资源的收集、评价与高效利用提供了重要依据。  相似文献   

11.
以260份花生材料为试材,采用不同的遗传距离构建吉林省花生初级核心种质。在50%的取样比例下,采用数量性状参数均值差异百分率、方差差异百分率、极差符合率、变异系数变化率4个指标评价不同方法构建的初级核心种质的可行性和有效性。最终选出一种合适的方法构建花生初级核心种质,并利用等位变异数、有效等位变异数、Shannon-Weaver指数、Nei期望杂合度等SSR标记相关参数进行验证。研究结果表明:基于欧式距离,采用优先取样法结合最短距离法进行聚类分析,构建包含128个样品的花生核心种质。采用SSR标记参数进行验证,表明128份初级核心种质可以代表原种质80%的遗传信息,较好地代表了原种质的遗传多样性。  相似文献   

12.
为筛选出较优的核心种质构建策略,基于前期调查的480份番茄种质资源的20个表型性状数据,依次对8个系统聚类法和5个不同的抽样比例分别进行对比;在此基础上对2个遗传距离、排名前二的抽样比例、3个抽样方法和排名前二的系统聚类法进行组合试验,并对所构建的24个核心种质进行代表性评价。结果表明,系统聚类法的排序为离差平方和法>可变法>最长距离法>可变类平均法>中间距离法>最短距离法>类平均法;抽样比例排序为15%>30%>25%>20%>10%;组合试验最佳的构建方法是:遗传距离为马氏距离,抽样比例为15%,抽样方法为偏离度取样法,系统聚类法为离差平方和法。研究结果为构建核心种质提供了最优构建策略,为宁夏地区番茄种质资源的核心种质构建与相关研究提供了理论依据和技术支持。  相似文献   

13.
整合质量数量性状构建作物核心种质的策略研究   总被引:2,自引:0,他引:2       下载免费PDF全文
质量性状和数量性状在不同水平反映了个体间的遗传差异,现有遗传相似性的度量往往割裂两者的信息.本文提出了整合质量性状和数量性状评价个体间遗传相似性的统计策略,调整的欧氏距离能有效地度量个体间的差异,并能很好地处理性状数据的缺失.实例分析了中国农业科学院、华南农学院、广东省农科院水稻生态研究室收集和调查的2262份水稻种质资源10个质量性状和15个数量性状的数据资料,用调整的欧氏距离及不加权类平均法进行群体分类,多次聚类优先取样法抽取8个不同容量的巢式子集并进行遗传多样性比较.结果表明:基于整合信息构建的核心种质同时具有较高的数量性状和质量性状遗传多样性;仅用质量性状信息不足以评价个体间的遗传差异;核心种质构建中应该采用数量性状的信息,同时整合质量性状的信息.  相似文献   

14.
【目的】探讨构建传统菊花品种核心种质的最优取样方法并构建核心种质,以便于传统菊花种质资源的收集与保存。【方法】以《中国菊花》专著中记载的2 249份传统菊花品种为材料,依据舌状花花色分为8组,采用逐步聚类法基于4种总体取样规模(5%、10%、15%、20%)和4种组内取样比例方法(简单比例、对数比例、平方根比例、多样性比例)构建了传统菊花备选核心种质16个,探讨最优的取样策略。筛选出最优取样策略后进一步比较2种组内取样方法(随机和聚类)的构建效果。对最优方法下建立的核心种质代表性进行检验,利用多个特征值(最小值、最大值、均值、标准差、变异系数、Shannon-Weaver遗传多样性指数)和评价参数(均值差异百分率(MD)、方差差异百分率(VD)、极差符合率(CR)、变异系数变化率(VR)和表型保留比例(RPR))综合地评价核心种质。【结果】传统菊花按照花色进行分组,各组品种呈现正态分布,能够确保取样的均匀性;对数比例法和多样性比例法都能够使每组的取样份数更加均衡,起到良好的修正作用,对数比例法下构建的核心种质各项参数值达到最大,是最优取样比例法;随着总体取样规模的增加,遗传多样性指数呈现先增大再减小的趋势,变异系数变化率不断减小,极差符合率和表型保留比例不断增大;当取样规模大于10%时,遗传多样性指数和变异系数变化率减小,而极差符合率和表型保留比例的升幅并不大,因此,构建传统菊花核心种质最适宜的总体取样规模为10%;聚类取样构建的备选核心种质各项参数值均大于随机取样构建的对应备选核心种质的参数值,以聚类取样方法构建的核心种质变异的丰富性和均匀程度更好。核心种质各特征值与原始种质表现一致,多个评价参数值表明核心种质的均度和丰度较好,充分体现了表型的遗传多样性。通过补充聚类丢失的“追抱”1个花抱性状和对花序高度、外层瓣长2个性状的完善,最终构建得到228个传统菊花品种的核心种质,占原始材料的10.14%。【结论】本研究基于2 249份传统菊花品种材料的15个表型性状,系统地比较了多种总体取样规模、组内取样比例方法、组内取样方法构建的备选核心种质后,确定了最佳的核心种质构建方法,并对核心种质的代表性进行了分析和验证,各特征值和评价参数表明本研究构建的核心种质是有效的,核心种质充分地代表了传统菊花原始种质的遗传多样性。  相似文献   

15.
基于SSR标记的楸树遗传多样性及核心种质构建   总被引:1,自引:0,他引:1  
利用SSR标记对192个楸树种质资源进行遗传多样性和亲缘关系研究。试验筛选出13对引物对192份供试材料进行扩增,共获得89个等位基因位点,有效等位基因平均为3.795 9,Shannon’s多样性指数平均值为0.506 6;Nei’s遗传多样性平均值为0.667 7。用MEGA6.0软件对192份楸树材料进行遗传距离分析,通过聚类分析构建出供试材料楸树种质资源间的聚类图。利用SSR分子标记,采用多次聚类结合位点优先的取样策略,比较了样本数不同的4个核心样本群的等位基因数、有效等位基因数、Shannon’s指数和Nei’s遗传多样等参数,初步构建了192份楸树种质材料的46份核心种质。核心种质保留了初始种质23.96%的样品。  相似文献   

16.
Based on the genetic clustering from 42 microsatellite (SSR) markers with a combination of their geographic origin and germplasm characteristics, 124 maize landraces from Wuling Mountain region in China were used for constructing a core collection. Four evaluating parameters for maize landrace core collection, including mean difference percentage (MD), variance difference percentage (VD), coincidence rate of range (CR), and variable rate of coefficient of variation (VR), were assessed with 20 quantitative traits. It was shown that genetic relationships among landraces in Wuling Mountain region had the tendency to associate with their geographic origins. The 124 landraces were clustered into 18 subgroups when the coefficient of genetic similarity (GS) is 0.28. Eighteen landraces, each of which was from one subgroup, were applied to construct the core collection with a sampling percentage of 15%. Comparison of the initial and core collection indicated that there existed no significant differences in most quantitative traits. An average of 6.3 and 6.5 alleles were detected in the initial and core collection, respectively. Mean polymorphism information content in the core collection (0.75) was higher than that in the initial one (0.72). MD was lesser than 20% and CR was more than 80%. The results showed that the sampling strategy would be feasible for constructing the core collection that well represents the genetic diversity of the initial one.  相似文献   

17.
Based on the genetic clustering from 42 microsatellite (SSR) markers with a combination of their geographic origin and germplasm characteristics, 124 maize landraces from Wuling Mountain region in China were used for constructing a core collection. Four evaluating parameters for maize landrace core collection, including mean difference percentage (MD), variance difference percentage (VD), coincidence rate of range (CR), and variable rate of coefficient of variation (VR), were assessed With 20 quantitative traits. It was shown that genetic relationships among landraces in Wuling Mountain region had the tendency to associate with their geographic origins. The 124 landraces were clustered into 18 subgroups when the coefficient of genetic similarity (GS) is 0.28. Eighteen landraces, each of which was from one subgroup, were applied to construct the core collection with a sampling percentage of 15%. Comparison of the initial and core collection indicated that there existed no significant differences in most quantitative traits. An average of 6.3 and 6.5 alleles were detected in the initial and core collection, respectively. Mean polymorphism information content in the core collection (0.75) was higher than that in the initial one (0.72). MD was lesser than 20% and CR was more than 80%. The results showed that the sampling strategy would be feasible for constructing the core collection that well represents the genetic diversity of the initial one.  相似文献   

18.
构建核心种质可大幅提高种质资源利用效率。以410份甜椒种质资源为材料,基于8个性状表型数据,采用混合线性模型分析方法无偏地预测基因型值,利用马氏距离计算种质间遗传距离,分别采用两种聚类方法(最短距离法和类平均法)和两种取样方法(随机取样法和偏离度取样法),按照25%抽样比率构建甜椒核心种质库。采用均值、方差、极差和变异系数4个指标评价不同取样和聚类构建核心种质库水平。结果表明,最短距离法能极显著增加性状方差和变异系数,明显优于类平均法;偏离度取样法优于随机取样法;基于马氏距离、最短距离法和偏离度取样方法获取的102份甜椒核心种质资源能代表原群体遗传多样性。该研究可为甜椒种质资源有利基因发掘和新品种选育奠定基础。  相似文献   

19.
【目的】构建核桃核心种质以便更好地保存、评价和利用丰富的核桃种质资源。【方法】利用AFLP分子标记,对131份核桃原始种质采用逐步聚类法建立候选核心种质,比较不同候选核心种质的多态性位点数、多态性位点百分率,结合形态学指标及地理来源,最终确定核桃核心种质,并进行评价。【结果】建立的核桃核心种质保留了原始种质10%的样品,分别为河北的天桥1号、陕西的西洛2号和西林1号、山西的晋龙1号、山东的丰辉、辽宁的辽宁8号和辽73013、新疆的温185、河南的绿波、北京的北京746、美国引进品种维纳、日本引进品种清香和朝鲜的品种安边1号。根据遗传多样性评价结果,与原始种质相比,核心种质的多态性位点保留率为75.4%。【结论】构建的核桃核心种质能较大程度地代表原始种质的遗传信息,符合核心种质要求。  相似文献   

20.
利用AFLP分子标记技术构建花莲核心种质资源   总被引:4,自引:0,他引:4  
杨美  付杰  向巧彦  刘艳玲 《中国农业科学》2011,44(15):3193-3205
 【目的】构建花莲核心种质,以利于对花莲种质资源的保存、研究和利用。【方法】利用AFLP分子标记,对395份花莲原始种质按照种属来源分组后采用组内简单比例法和聚类抽样法建立候选核心种质,比较不同候选核心种质的多态性位点数、多态性位点百分率、观测等位基因数、有效等位基因数、Nei’s遗传多样性指数和Shannon’s信息指数等参数,最终确定花莲核心种质,并进行核心种质与原始种质的遗传多样性比较和t检验。【结果】所获得88个品种的花莲核心种质包括60份中国花莲品种,3份美洲黄莲,16份中美杂交莲和9份日本莲品种。核心种质保留了原始种质22.27%的样品,多态性位点和多态性位点百分率保留率为99.27%,观测等位基因数、有效等位基因数、Nei’s遗传多样性指数、Shannon’s信息指数的保留率分别为100.00%、101.72%、110.00%、106.67%。t测验结果表明,核心种质的遗传多样性指数与原始种质差异不显著。【结论】根据聚类分析结果剔除原始种质中的冗余种质后,建立的核心种质以最少的花莲资源可代表原始种质最大的遗传多样性。本文所构建的花莲核心种质在遗传上能最大程度地代表原始种质资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号