首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文给出掺Er~(3+)、掺Nd~(3+)和普通单模光纤在3800A——18000A波段上的吸收谱,以及关于半导体激光器激发掺Nd~(3+)光纤荧光曲线的实验结果,并对它们的吸收谱进行相互比较,讨论光纤激光器、放大器的最佳泵浦波长,建议用NYAB自倍频激光器作为掺Er~(3+)和Nd~(3+)光纤泵浦光源。  相似文献   

2.
掺杂稀土光纤放大器是一种新颖的有源光纤器件,尤其是掺Er~(3+)光纤放大器工作波长是1.536μm,正处于光纤通讯的最佳窗口,引起人们极大重视。本文对掺Er~(3+)、掺钕和SiO_2基的单模光纤的吸收谱和荧光谱在  相似文献   

3.
铒镱(Er~(3+)/Yb~(3+))共掺光纤是实现波长为1.5μm激光的重要增益介质之一。但是石英基Er~(3+)/Yb~(3+)共掺光纤很容易产生波长为1μm的放大的自发辐射(ASE)光,不仅降低1.5μm激光的泵浦转换效率,而且是限制1.5μm激光功率提升的"瓶颈"。研究结果表明,提升纤芯磷的掺杂量,能够增大纤芯基质的最大声子能量,有利于抑制Yb~(3+)的ASE光和Er~(3+)→Yb~(3+)的反向能量传递,从而提高Er~(3+)/Yb~(3+)共掺光纤的泵浦转换效率。通过改良的化学气相沉积制备工艺可以减少磷元素在高温条件下的挥发,从而成功制备出高掺磷的10/130μm双包层Er~(3+)/Yb~(3+)共掺光纤。测试光纤后向的1μm ASE光谱随泵浦功率的变化,并且搭建两级激光测试平台,测得Er~(3+)/Yb~(3+)共掺光纤激光的斜率效率为35.5%。  相似文献   

4.
本文综述我们用铁宝石可调谐激光,半导体激光,氩离子激光等不同波长光源泵浦掺Er~(3+)光纤放大器的输出特性,在比较不同光纤长度、不同信号波长(1.536μm,1.52μm)、不同温度(常温、液氮温度)等条件下,掺Er~(3+)光纤放大器的放大增益特性。给出掺Er~(3+)光纤放大器的理论模型,  相似文献   

5.
掺Yb~(3+)/Er~(3+)石英光纤中频率上转换的实验研究   总被引:1,自引:0,他引:1  
首次报道了实验研究连续1064nm Nd:YAG激光器泵浦的掺稀土离子Yb~(3+)/Er~(3+)石英光纤中频率上转换过程。测量了掺Yb~(3+)/Er~(3+)石英光纤产生的频率上转换可见荧光谱,并用能量转移、受激态吸收和双光子吸收过程解释了467,546和667nm三条频率上转换荧光谱线的产生机理。  相似文献   

6.
根据用Coherent 899-29钛宝石激光器在800nm泵浦带选择掺铒光纤放大器最佳泵浦波长和获得高达35dB增益的研究结果,最近我们利用Sharp LT 017 MD型单模半导体激光器(P=40mW,λ_D=807nm)整形、准直后作泵浦光源,以中国建材院石英所研制的低损耗掺铒石英单模光纤作放大介质。光纤芯径4.9μm,数值孔径0.22,长度5.8m。采用工作波长为1.536μm的分布反馈激光器作信号源,信号光和泵浦光通过光纤方向耦合器合波到掺铒光纤  相似文献   

7.
掺Er~(3+)石英光纤中倍频效应的实验研究   总被引:1,自引:0,他引:1  
采用一种新的光纤倍频两步激光预处理方法处理掺Er~(3+)石英光纤,并获得8.8%的峰值倍频转换效率。测定了掺Er~(3+)光纤的有效倍频长度,探讨了掺Er~(3+)光纤产生高转换效率倍频光的物理过程。倍频光的脉宽是基频光波的0.7倍和短光纤中倍频光峰值功率随泵浦激光峰值功率平方变化的实验结果表明,倍频光是通过二阶非线性过程产生的。  相似文献   

8.
基于对双包层光纤的内包层结构、掺杂浓度、剖面折射率分布、外包层的背底损耗等因素对泵浦光吸收效率的影响进行分析的基础上,对掺Yb3 双包层光纤内包层直径对泵浦光的吸收长度和泵浦效率进行了理论模拟.采用半导体激光二极管光纤模块作为泵浦源,采用梅花瓣型双包层光纤与光纤光栅元件连接制作了全光纤结构的光纤激光器,实验获得了6.02W单模光纤激光器,中心波长为1080nm,半高宽为0.11nm,斜率效率为1.7W/A.  相似文献   

9.
掺钕光纤激光器输出超过5W麻省宝丽来公司研制成一种掺钦光纤激光器,在1060urn波长处连续波单横模输出达SW。研究组认为,这是迄今从连续波单模光纤激光器运转所达到的最高能量。性能改善归功于其独特的光纤几何形状,它为获取激光二极管泵浦光并将它转换成极...  相似文献   

10.
196W功率输出的高功率包层泵浦光纤激光器   总被引:2,自引:1,他引:1  
文章首先阐述了包层泵浦技术以及基于包层泵浦技术的包层泵浦激光器,同时还介绍了一种新型泵浦技术,即从大面积激光二极管向小截面的单模光纤芯层传输能量的侧面泵浦技术。然后介绍了我们试验中的大功率包层泵浦光纤激光器,该激光器采用的是端面泵浦技术。当泵浦功率为240W时,光纤激光器在1.09μm处产生了高质量的196W连续波长输出,获得了85%的斜坡效率。  相似文献   

11.
1.首次实现用掺铒光纤激光器直接泵浦光参量振荡器英国Southampton光电研究中心的研究人员用波长1.55μm的掺铒光纤激光器直接泵浦光学参量振荡器,该振荡器是用具有周期性电极的铅酸锂晶体作为非线性介质.掺铒光纤有一个较大的有效芯面积(600μm~2),并工作在单模状态,这是因为精心地控制掺稀土元素,所以可以产生高能量脉冲.用声光布喇格元件实现激光器的Q开关.铌酸锂晶体有5个周期为32.4~33.2  相似文献   

12.
苏冰  戴基智  代志勇 《红外》2008,29(6):36-40
文中分析了在980nm低功率连续泵浦源泵浦的条件下基于瑞利(RS)受激布里渊散射(SBS)效应的掺铒光纤激光器的自调Q过程。根据泵浦功率与重复频率、有效单模光纤长度与输出功率、有效单模光纤长度与脉冲宽度(FWHM)以及光纤干涉环分光比与输出功率等关系,通过仿真得知单模光纤长度为10m和光纤干涉环分光比为70:30时的输出功率最大,得到了最佳有效单模光纤长度和最佳光纤干涉环分光比,优化了激光器结构参数,并建立了自调Q掺铒光纤激光器的简化模型。  相似文献   

13.
半导体激光器泵浦的掺铒光纤放大器   总被引:1,自引:0,他引:1  
掺铒光纤放大器是一种激活光纤,与通信光纤有很好的相容性,插入损耗和接头反馈都很小,可避免接头反馈的干扰,还有高增益和低噪声等许多优点,工作波长(1.5μm)适中,因此,在远距离光纤通信等诸多方面有重要的用途。 我们利用GaAlAs单管高功率单模半导体激光器作泵浦源,以中国建材院石英所研制的低损耗掺铒石英单模光纤作放大介质,在今年四月初看到了掺铒石英光纤的放大现象,放大波长为1.55μm,增益5.6dB,泵浦波长为800nm。掺铒光纤纤芯直径为4.9μm,数值孔径0.22,长度11m。  相似文献   

14.
本文报道了采用国产器件进行的1.47μm激光二极管(LD)泵浦的掺铒光纤放大器的实验结果。采用模场匹配技术使标准单模光纤(MFD=9.125μm)与掺铒光纤(MFD=3.88μm)之间的熔接损耗降至0.2dB。研究了放大器的增益特性,获得了24dB的小信号增益。  相似文献   

15.
马建立  姜诗琦  于淼  刘海娜  王军龙  王学锋 《红外与激光工程》2016,45(11):1105002-1105002(5)
采用976 nm锁波长激光二极管(LD)双向泵浦掺Yb全光纤激光器,单谐振腔输出1.2 kW近单模激光,总光光转换效率为70.8%,光束质量Mx21.03,My21.55,实验验证在千瓦功率量级内,正、反泵浦相互影响不明显。光纤激光器从阈值电流到最大电流范围内,输出功率随泵浦功率曲线基本线性,在1 kW功率下做8小时稳定性测试,稳定度在2%以下。激光器可在宽温度范围内工作,温度循环试验表明,输出功率随温度变化具有较好的一致性。  相似文献   

16.
文章作者分析了铒铥共掺碲基质光纤放大器在980 nm泵浦下Er~(3+)-Tm~(3+)离子之间的能量转移过程,建立了速率方程和功率传输方程,并通过仿真得出了其放大增益随光纤长度和泵浦功率的变化规律.仿真结果表明:通过优化光纤长度和泵浦功率,该放大器可以在1 440~1 540 nm波段得到高达50 dB的平坦增益.  相似文献   

17.
激光二极管泵浦的掺铒光纤放大器研究   总被引:1,自引:0,他引:1  
报道了半导体激光器泵浦的掺铒单模玻璃光纤放大器。放大器的增益为5.6dB,放大波长为1.55μm。讨论了提高增益的途径。  相似文献   

18.
超荧光光纤光源的工作特性   总被引:1,自引:0,他引:1  
金振洪  陆江 《激光杂志》2000,21(5):14-15
研制了一种激光二极管泵浦的掺钕超荧光光纤光源,在波长1.08μm处获得了1.0mW的光功率输出,谱线宽度为21.2nm,实验中使用的是掺钕单模光纤,芯径5μm,截止波长1.0μm,其损耗在泵浦波长0.8μm处为1500dB/km,而在输出波长1.08μm处为10dB/km。  相似文献   

19.
采用国产激光二极管泵浦和国产掺镱(Yb)双包层光纤,研制了1053nm光纤激光器.谐振腔由光纤光栅和平面输出镜组成.通过3种不同实验方案的对比,实现了低阈值的光纤激光器,阈值泵浦功率1mW,并分析了激光光谱随光谱仪分辨率的变化,对正确选择分辨率提出了一些建议.  相似文献   

20.
本文介绍掺饵光纤形成的环形单模光纤激光器。当使用1.48μm半导体激光器作泵浦源时,可调谐谱宽可达30nm(从1.53μm到1.56μm),最大输出功率>1mw,带宽<2nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号