首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The study of young stellar populations has revealed that most stars are in binary or higher order multiple systems. In this study, the influence on the stellar initial mass function (IMF) of large quantities of unresolved multiple massive stars is investigated by taking into account the stellar evolution and photometrically determined system masses. The models, where initial masses are derived from the luminosity and colour of unresolved multiple systems, show that even under extreme circumstances (100 per cent binaries or higher order multiples), the difference between the power-law index of the mass function (MF) of all stars and the observed MF is small (≲0.1). Thus, if the observed IMF has the Salpeter index  α= 2.35  , then the true stellar IMF has an index not flatter than  α= 2.25  . Additionally, unresolved multiple systems may hide between 15 and 60 per cent of the underlying true mass of a star cluster. While already a known result, it is important to point out that the presence of a large number of unresolved binaries amongst pre-main-sequence stars induces a significant spread in the measured ages of these stars even if there is none. Also, lower mass stars in a single-age binary-rich cluster appear older than the massive stars by about 0.6 Myr.  相似文献   

3.
We have carried out a search for co‐moving stellar and substellar companions around 18 exoplanet host stars with the infrared camera MAGIC at the 2.2 m Calar Alto telescope, by comparing our images with images from the all sky surveys 2MASS, POSS I and II. Four stars of the sample namely HD80606, 55 Cnc, HD46375 and BD–10°3166, are listed as binaries in the Washington Visual Double Star Catalogue (WDS). The binary nature of HD80606, 55 Cnc, and HD46375 is confirmed with both astrometry as well as photometry, thereby the proper motion of the companion of HD46375 was determined here for the first time.We derived the companion masses as well as the longterm stability regions for additional companions in these three binary systems. We can rule out further stellar companions around all stars in the sample with projected separations between 270AU and 2500AU, being sensitive to substellar companions with masses down to ∼60 MJup (S /N = 3). Furthermore we present evidence that the two components of the WDS binary BD–10°3166 are unrelated stars, i.e this system is a visual pair. The spectrophotometric distance of the primary (a K0 dwarf) is ∼67 pc, whereas the presumable secondary BD–10°3166B (a M4 to M5 dwarf) is located at a distance of 13 pc in the foreground. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The landscape of Galactic X‐ray sources made of accreting binaries, isolated objects and active stellar coronae has been significantly modified by the advent of the Chandra, XMM‐Newton and INTEGRAL satellites. New types of relatively low X‐ray luminosity X‐ray binaries have been unveiled in the Galactic disc, while deep observations of the central regions have revealed large numbers of X‐ray binaries of so far poorly constrained nature. Because of the high spatial resolution needed and faint X‐ray luminosities generally emitted, studying the dependency of the X‐ray source composition with parent stellar population, Galactic disc, bulge, nuclear bulge, etc., is only practicable in our Galaxy. The evolutionary links between low LX X‐ray binaries and classical X‐ray luminous accreting systems are still open in many cases. In addition, the important question of the nature of the compact sources contributing to the Galactic ridge hard X‐ray emission remains unresolved. We review the most important results gathered by XMM‐Newton over the last years in this domain and show how future observations could be instrumental in addressing several of these issues. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This is the first paper of a series aimed at studying the properties of late-type members of young stellar kinematic groups. We concentrate our study on classical young moving groups such as the Local Association (Pleiades moving group,     , IC 2391 supercluster (35 Myr), Ursa Major group (Sirius supercluster, 300 Myr), and Hyades supercluster (600 Myr), as well as on recently identified groups such as the Castor moving group (200 Myr). In this paper we compile a preliminary list of single late-type possible members of some of these young stellar kinematic groups. Stars are selected from previously established members of stellar kinematic groups based on photometric and kinematic properties as well as from candidates based on other criteria such as their level of chromospheric activity, rotation rate and lithium abundance. Precise measurements of proper motions and parallaxes taken from the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, and published radial velocity measurements are used to calculate the Galactic space motions ( U , V , W ) and to apply Eggen's kinematic criteria in order to determine the membership of the selected stars to the different groups. Additional criteria using age-dating methods for late-type stars will be applied in forthcoming papers of this series. A further study of the list of stars compiled here could lead to a better understanding of the chromospheric activity and their age evolution, as well as of the star formation history in the solar neighbourhood. In addition, these stars are also potential search targets for direct imaging detection of substellar companions.  相似文献   

6.
We present our findings based on a detailed analysis of the binaries of the Hyades, in which the masses of the components are well known. We fit the models of the components of a binary system to observations so as to give the observed total V and B − V of that system and the observed slope of the main sequence in the corresponding parts. According to our findings, there is a very definite relationship between the mixing-length parameter and the stellar mass. The fitting formula for this relationship can be given as  α= 9.19( M /M− 0.74)0.053− 6.65  , which is valid for stellar masses greater than  0.77 M  . While no strict information is gathered for the chemical composition of the cluster, as a result of degeneracy in the colour–magnitude diagram, by adopting   Z = 0.033  and using models for the components of 70 Tau and θ2 Tau we find the hydrogen abundance to be   X = 0.676  and the age to be 670 Myr. If we assume that   Z = 0.024  , then   X = 0.718  and the age is 720 Myr. Our findings concerning the mixing-length parameter are valid for both sets of the solution. For both components of the active binary system V818 Tau, the differences between radii of the models with   Z = 0.024  and the observed radii are only about 4 per cent. More generally, the effective temperatures of the models of low-mass stars in the binary systems studied are in good agreement with those determined by spectroscopic methods.  相似文献   

7.
We present a combined method to classify stellar spectra of the seventh data release (DR7) of the SDSS via an Artificial Neural Network (ANN), derive radial velocities and to estimate distances from an isochrone fitting technique. In total, we used 29 182 spectra of stars falling in the effective temperature range between 10000 and 5500 K, including white dwarfs. The targets were selected on the basis of SDSS colours. We compare our results not only with the SEGUE Stellar Parameter Pipeline output, but also with already published values and find excellent agreement. With new and extensive data sets from all‐sky ground based as well as satellite missions, our approach will become very important and efficient to analyse these information (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A peak exists in the distribution of observed black hole masses and no satisfactory explanation has been forthcoming so far. Here, we attempt an interpretation. We first establish a link between the helium core mass and the initial black hole mass, based on the result of 2-dimensional simulation of stellar core collapse by Fryer et al. Then the helium core masses are computed by using the PPE stellar evolution code, and the distribution of initial black hole masses for black hole binaries in stellar populations II and I is obtained. These are then compared with observations.  相似文献   

10.
We investigate the formation of binary stellar systems. We consider a model where a 'seed' protobinary system forms, via fragmentation, within a collapsing molecular cloud core and evolves to its final mass by accreting material from an infalling gaseous envelope. This accretion alters the mass ratio and orbit of the binary, and is largely responsible for forming the circumstellar and/or circumbinary discs.
Given this model for binary formation, we predict the properties of binary systems and how they depend on the initial conditions within the molecular cloud core. We predict that there should be a continuous trend such that closer binaries are more likely to have equal-mass components and are more likely to have circumbinary discs than wider systems. Comparing our results with observations, we find that the observed mass-ratio distributions of binaries and the frequency of circumbinary discs as a function of separation are most easily reproduced if the progenitor molecular cloud cores have radial density profiles between uniform and 1/ r (e.g., Gaussian) with near-uniform rotation. This is in good agreement with the observed properties of pre-stellar cores. Conversely, we find that the observed properties of binaries cannot be reproduced if the cloud cores are in solid-body rotation and have initial density profiles which are strongly centrally condensed. Finally, in agreement with the radial-velocity searches for extrasolar planets, we find that it is very difficult to form a brown dwarf companion to a solar-type star with a separation ≲10 au, but that the frequency of brown dwarf companions should increase with larger separations or lower mass primaries.  相似文献   

11.
We determine the possible masses and radii of the progenitors of white dwarfs in binaries from fits to detailed stellar evolution models and use these to reconstruct the mass-transfer phase in which the white dwarf was formed. We confirm the earlier finding that in the first phase of mass transfer in the binary evolution leading to a close pair of white dwarfs, the standard common-envelope formalism (the α-formalism) equating the energy balance in the system (implicitly assuming angular momentum conservation) does not work. An algorithm equating the angular momentum balance (implicitly assuming energy conservation) can explain the observations. This conclusion is now based on 10 observed systems rather than three. With the latter algorithm (the γ-algorithm) the separation does not change much for approximately equal-mass binaries. Assuming constant efficiency in the standard α-formalism and a constant value of γ, we investigate the effect of both methods on the change in separation in general and conclude that when there is observational evidence for strong shrinkage of the orbit, the γ-algorithm also leads to this. We then extend our analysis to all close binaries with at least one white dwarf component and reconstruct the mass-transfer phases that lead to these binaries. In this way we find all possible values of the efficiency of the standard α-formalism and of γ that can explain the observed binaries for different progenitor and companion masses. We find that all observations can be explained with a single value of γ, making the γ-algorithm a useful tool to predict the outcome of common-envelope evolution. We discuss the consequences of our findings for different binary populations in the Galaxy, including massive binaries, for which the reconstruction method cannot be used.  相似文献   

12.
The Spitzer Space Telescope allows for the .rst time to search systematically for very low luminosity (≲0.1 L) objects (VeLLOs) associated with dense molecular cores. They may be the .rst candidate Class 0 sources with sub‐stellar masses. We describe such a source in the dense molecular core L1148. VeLLO natal cores show properties that are unusual for star‐forming cores. The low luminosity and in some cases the lack of prominent out.ow could be the result of the small gas supply near the VeLLO. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper I will review some recent developments in the field of circumstellar shocks, particularly as they relate to colliding stellar winds. I shall review the basic physics of colliding winds and shocks, and discuss recent developments in hydrodynamic modelling of colliding winds. I shall also report on recent X-ray observations of shock emission in Wolf-Rayet binary systems where high resolution X-ray spectra of colliding wind shock emission is being seen. I will discuss the occurrence of colliding winds to such diverse systems as Wolf-Rayet binaries, pre-main sequence binaries, symbiotic stars as well as the Galactic center object IRS 7, where recent results on interacting winds are yielded insight into the structure of winds in general.  相似文献   

14.
We present a method of determining lower limits on the masses of pre-main-sequence (PMS) stars and so constraining the PMS evolutionary tracks. This method uses the redshifted absorption feature observed in some emission-line profiles of T Tauri stars, indicative of infall. The maximum velocity of the accreting material measures the potential energy at the stellar surface, which, combined with an observational determination of the stellar radius, yields the stellar mass. This estimate is a lower limit owing to uncertainties in the geometry and projection effects. Using available data, we show that the computed lower limits can be larger than the masses derived from PMS evolutionary tracks for M   0.5 M. Our analysis also supports the notion that accretion streams do not impact near the stellar poles but probably hit the stellar surface at moderate latitudes.  相似文献   

15.
A close high‐mass binary system consisting of a neutron star (NS) and a massive OB supergiant companion is expected to lead to a Thorne‐Żytkow object (TZO) structure, which consists of a NS core and a stellar envelope. We use the scenario machine program to calculate the formation tracks of TZOs in close high‐mass NS binaries and their subsequent evolution. We propose and demonstrate that the explosion and instant contraction of a TZO structure leave its stellar remnant as a soft gamma‐ray repeater and an anomalous X‐ray pulsar respectively. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We have searched for new members of the TWHya association (TWA) among unidentified ROSAT X‐ray sources by identifying them in proper motion catalogues and selecting those that would be consistent with kinematical membership to the TWA. Spectroscopic follow‐up observations of 19 member candidates revealed the detection of moderate lithium absorption lines for the following three stars: GSC 7206 845, TYC 7216‐55, and TYC 7247‐12. The isochronal ages of the latter TYC stars are estimated to be ∼20 Myr while the other one has ∼100 Myr age based on a kinematic distance estimate that assumes TWA membership. However, the moderately Li‐rich stars are not likely to be new pre‐main sequence members of TWA partly because of the discrepant radial velocities. Infrared follow‐up imaging in the H‐band for the 3 stars shows companion candidates near two of them.While one system (TYC 7216‐55) is probably a near‐equal‐magnitude stellar binary, our follow‐up H‐band spectrum of the faint companion candidate near GSC 7206 845 shows that it is instead a background K‐type star rather than a companion. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We consider how the tidal potential of a stellar cluster or a dense molecular cloud affects the fragmentation of gravitationally unstable molecular cloud cores. We find that molecular cloud cores which would collapse to form a single star in the absence of tidal shear, can be forced to fragment if they are subjected to tides. This may enhance the frequency of binaries in star-forming regions such as Ophiuchus and the frequency of binaries with separations ≲100 au in the Orion Trapezium Cluster. We also find that clouds which collapse to form binary systems in the absence of a tidal potential will form bound binary systems if exposed to weak tidal shear. However, if the tidal shear is sufficiently strong, even though the cloud still collapses to form two fragments, the fragments are pulled apart while they are forming by the tidal shear and two single stars are formed. This sets an upper limit for the separation of binaries that form near dense molecular clouds or in stellar clusters.  相似文献   

18.
We examine the possibility of probing dynamo action in mass-losing stars, components of Algol-type binaries. Our analysis is based on the calculation of non-conservative evolution of these systems. We model the systems U Sge and β Per where the more massive companion fills its Roche lobe at the main sequence (case AB) and where it has a small helium core (early case B) respectively. We show that to maintain evolution of these systems at the late stages which are presumably driven by stellar 'magnetic braking', an efficient mechanism for producing large-scale surface magnetic fields in the donor star is needed. We discuss the relevance of dynamo operation in the donor star to the accelerated mass transfer during the late stages of evolution of Algol-type binaries. We suggest that the observed X-ray activity in Algol-type systems may be a good indicator of their evolutionary status and internal structure of the mass-losing stellar components.  相似文献   

19.
We discuss the observed orbital period modulations in close binaries, and focus on the mechanism proposed by Applegate relating the changes of the stellar internal rotation associated with a magnetic activity cycle with the variation of the gravitational quadrupole moment of the active component; the variation of this quadrupole moment in turn forces the orbital motion of the binary stars to follow the activity level of the active star. We generalize this approach by considering the details of this interaction, and develop some illustrative examples in which the problem can be easily solved in analytical form. Starting from such results, we consider the interplay between rotation and magnetic field generation in the framework of different types of dynamo models, which have been proposed to explain solar and stellar activity. We show how the observed orbital period modulation in active binaries may provide new constraints for discriminating between such models. In particular, we study the case of the prototype active binary RS Canum Venaticorum, and suggest that torsional oscillations — driven by a stellar magnetic dynamo — may account for the observed behaviour of this star. Further possible applications of the relationship between magnetic activity and orbital period modulation, related to the recent discovery of binary systems containing a radio pulsar and a convecting upper main-sequence or a late-type low-mass companion, are discussed.  相似文献   

20.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号