首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
One of the earliest changes, at the molecular level, that occurs in human Huntington's disease patients is reduction in cannabinoid receptor ligand binding in the substantia nigra pars reticulata compared to neurologically normal controls. The loss of cannabinoid receptor binding is thought to occur early in or prior to the development of Huntington's disease neuropathology. We wish to determine whether cannabinoid receptor messenger RNA levels were altered in a mouse model of Huntington's disease. Transgenic mice hemizygous for the promoter sequence and exon 1 of the human Huntington's disease gene exhibit a progressive neurological phenotype with many of the features of Huntington's disease. This neurological phenotype develops in the absence of neural degeneration making these mice a model system to dissociate changes related to cell dysfunction from changes related to cell loss. We examine the steady-state levels and cellular distribution of the brain-specific cannabinoid receptor messenger RNA by northern blot and in situ hybridization. The cannabinoid receptor messenger RNA was expressed throughout the striatum, cortex and hippocampus of wild-type mice. At four and five weeks of age, there was no difference in the distribution of the cannabinoid receptor messenger RNA between the wild-type and transgenic Huntington's disease mice. At six, seven, eight and 10 weeks of age, however, the Huntington's disease mice exhibit reduced levels of cannabinoid receptor messenger RNA in the lateral striatum compared to age-matched controls. The Huntington's disease mice also showed a loss of cannabinoid receptor messenger RNA within a subset of neurons in the cortex and hippocampus. We did not observe any difference in the expression of cannabinoid receptor between the wild-type and Huntington's disease mice throughout Ammon's horn of the hippocampus or in the medial striatum. The decrease in cannabinoid receptor messenger RNA levels preceded the development of the Huntington's disease phenotype and neuronal degeneration and, therefore, these transgenic mice model early cellular changes observed in human patients.Our results demonstrate that the single copy cannabinoid receptor gene is subjected to cell-specific and time-dependent regulation of the steady-state level of its gene product as a result of the expression of the Huntington's disease gene. As the endogenous cannabinoid receptor agonist, anandimide, has been shown to modulate dopamine neurotransmission within the basal ganglia, the loss of cannabinoid receptors may contribute to the development of motor symptoms or cognitive decline or both seen in Huntington's disease patients.  相似文献   

2.
Dopamine and serotonin neurotransmission regulate striatal preprotachykinin messenger RNA levels. In the present study, we investigated serotonin 2A/2C receptor-mediated regulation of preprotachykinin messenger RNA expression in the rat striatum after adult dopamine depletion produced with 6-hydroxydopamine. Significant reductions (46-61% of control values) in preprotachykinin messenger RNA levels were detected by in situ hybridization in rostral, central and caudal regions of the striatum after >85% dopamine depletion. Repeated administration of the specific serotonin2A/2C receptor agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrobromide, to dopamine-depleted rats completely reversed the reduction in preprotachykinin messenger RNA levels in rostral, central and dorsal-caudal striatal regions. In unlesioned (vehicle-injected) control animals, repeated administration of (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrobromide did not affect preprotachykinin messenger RNA expression in rostral, central and ventral-caudal striatal regions, but decreased preprotachykinin messenger RNA levels in the dorsal-caudal striatal subregion. In addition, serotonin turnover in the dopamine-depleted rostral striatum was significantly increased by 35-45% which is consistent with serotonin hyperinnervation after 6-hydroxydopamine lesions. These data show that the decrease in striatal preprotachykinin messenger RNA after dopamine depletion can be normalized with repeated serotonin2A/2C receptor stimulation. We hypothesize that this serotonin2A/2C receptor regulation of preprotachykinin messenger RNA expression after 6-hydroxydopamine is a consequence of serotonin hyperinnervation, which may include increased striatal serotonin2A/2C receptors, induced by dopamine depletion. We also propose that the serotonin system could be pharmacologically targeted to restore the direct striatal tachykinin pathway in Parkinson's disease.  相似文献   

3.
4.
The effect of treatment with the D1 dopamine receptor agonist SKF 38393 on the expression of metabotropic glutamate receptor 1, 3, 4 and 5 receptor subtypes and of the glutamate N-methyl-D-aspartate ionotropic receptor subunits NRI, NR2A and NR2B was analysed using in situ hybridization. We studied the neocortex and neostriatum of normal rats and of rats unilaterally treated with 6-hydroxydopamine, a neurotoxin that, after intracerebral injection into the ventral tegmental area, causes selective degeneration of the ascending dopamine pathway. In the 6-hydroxydopamine-lesioned rats, metabotropic glutamate receptor subtype 3 messenger RNA levels were ipsilaterally increased in the neocortex and neostriatum, while the levels of metabotropic glutamate receptor subtype 4 messenger RNA were bilaterally increased in both regions. When administered to the 6-hydroxydopamine-lesioned rats, the D1 receptor agonist SKF 38393 (3 x 20 mg/kg, s.c.) produced a bilateral decrease in the expression of the metabotropic glutamate receptor subtype 1 and 5 receptor messenger RNA levels in the neocortex and neostriatum. In the neostriatum, SKF 38393 attenuated the ipsilateral increase in the expression of striatal metabotropic glutamate receptor subtype 3 messenger RNA produced by the 6-hydroxydopamine lesion. Furthermore, SKF 38393 produced a bilateral decrease in the levels of NRI receptor subunit messenger RNA and, in contrast, an increase in the striatal NR2B messenger RNA levels. All of these effects were abolished by the D1 receptor antagonist SCH 23360. These results indicate a differential D1 receptor-mediated modulation of the expression of some glutamate receptor subtypes in the neostriatum and neocortex, in agreement with the idea of a functional coupling between dopamine and excitatory amino acid systems in both regions. Thus, pharmacological targeting of excitatory amino acid systems could provide alternative or complementary treatment strategies for diseases involving dopaminergic systems in the striatum (e.g., Parkinson's disease) and cortex (e.g., schizophrenia).  相似文献   

5.
Administered cannabinoids have been shown to ameliorate signs of CNS inflammatory disease in a number of animal models, including allergic encephalomyelitis. More recently, neuroprotective actions have been attributed to activation of the cannabinoid 1 receptor in a number of in vitro and in vivo models. One of these, chronic relapsing experimental allergic encephalomyelitis, is considered a robust analog of multiple sclerosis. In this study, spinal cord tissue from cannabinoid receptor 1 knockout mice was analyzed for neurofilament H and myelin basic protein content, as markers of neurons/axons and myelin respectively, during the course of chronic relapsing experimental allergic encephalomyelitis. Dephosphorylation of a neurofilament H epitope, immunoreactive to the SMI32 antibody, was assessed as a marker of axonal damage and levels of the endpoint cell death mediator caspase 3 were evaluated. It was found that both neurofilament and myelin basic protein levels decrease over the course of disease, indicating concomitant neuronal/axonal loss and demyelination. Loss of each marker was more severe in cannabinoid receptor 1 knockout animals. Increased SMI32 reactivity was observed as disease progressed. SMI32 reactivity was significantly increased in knockout animals over wildtype counterparts, an indication of greater axonal dephosphorylation and injury. Active caspase 3 levels were increased in all animals during disease, with knockout animals displaying highest levels, even in knockout animals prior to disease induction. These results indicate that lack of the cannabinoid receptor 1 is associated with increased caspase activation and greater loss and/or compromise of myelin and axonal/neuronal proteins. The increase of caspase 3 in knockout mice prior to disease induction indicates a latent physiological effect of the missing receptor. The data presented further strengthen the hypothesis of neuroprotection elicited via cannabinoid receptor 1 signaling.  相似文献   

6.
The indirect basal ganglia pathway in dopamine D(2) receptor-deficient mice   总被引:1,自引:0,他引:1  
Recent pathophysiological models of basal ganglia function in Parkinson's disease predict that specific neurochemical changes in the indirect pathway would follow the lack of stimulation of D(2) dopamine receptors. Post mortem studies of the basal ganglia in genetically modified mice lacking functional copies of the D(2) dopamine receptor gene allowed us to test these predictions. When compared with their congenic N(5) wild-type siblings, mice lacking D(2) receptors show an increased expression of enkephalin messenger RNA in the striatum, and an increased activity and expression of cytochrome oxidase I in the subthalamic nucleus, as expected. In addition, D(2) receptor-deficient mice display a reduced expression of glutamate decarboxylase-67 messenger RNA in the globus pallidus, as the basal ganglia model predicts. This reduction contrasts with the lack of change or increase in glutamate decarboxylase-67 messenger RNA expression found in animals depleted of dopamine after lesions of the mesostriatal dopaminergic system. Furthermore, D(2) receptor-deficient mice show a significant decrease in substance P messenger RNA expression in the striatonigral neurons which form the direct pathway. Finally, glutamate decarboxylase-67 messenger RNA expression in the basal ganglia output nuclei was not affected by mutations in the D(2) receptor gene, a fact that could probably be related to the absence of a parkinsonian locomotor phenotype in D(2) receptor-deficient mice.In summary, these findings provide compelling evidence demonstrating that the lack of endogenous stimulation of D(2) receptors is sufficient to produce subthalamic nucleus hyperactivity, as assessed by cytochrome oxidase I histochemistry and messenger RNA expression, and strongly suggest the existence of interactions between the basal ganglia direct and indirect pathways.  相似文献   

7.
In situ hybridization histochemistry was used to investigate the putative regulation of cholecystokinin messenger RNA expression by dopamine in the rat striatum. Using this method, cholecystokinin messenger RNA was undetectable in the normal rat striatum. Dopamine depletion caused by a 6-hydroxydopamine injection in the medical forebrain bundle induced, two and four weeks after the injection, an increase of cholecystokinin messenger RNA expression in the ipsilateral striatum. The labeling was mostly restricted to the dorsolateral quadrant. At the cellular level, this corresponded to a slight but significant labeling of a moderate density of striatal neurons which most probably represent a subpopulation of medium-sized spiny neurons. Conversely, treatment with either haloperidol or SCH23390 for two weeks did not induce any detectable changes in cholecystokinin messenger RNA expression in the striatum while, as expected, an increase in the striatal enkephalin messenger RNA content was observed. These results suggest that the dopaminergic nigrostriatal pathway directly, or indirectly, regulates the expression of cholecystokinin messenger RNA in the striatum.  相似文献   

8.
背景:Cathepsis家族是否参与脊髓损伤早期的病理过程以及大剂量甲基强的松龙是否通过溶酶体机制发挥神经保护作用目前尚不清楚。 目的:检测Cathepsin基因家族在脊髓损伤早期的表达和大剂量甲基强的松龙干预后的变化,明确大剂量甲基强的松龙是否通过调节溶酶体凋亡途径发挥神经保护作用。 方法:9只日本大耳兔随机分为3组:模型组和药物组进行椎板切除后采用Allen法建立急性脊髓损伤模型,药物组在造模后2 h按人-兔等效剂量给予大剂量甲基强的松龙冲击治疗,对照组仅进行椎板切除。造模后8 h处死实验动物,取脊髓组织,采用Trizol法提取总RNA,用9张Agilent 兔子全基因4*44K芯片进行检测。采用GeneSpring 10.0软件,以P < 0.05 且倍数变化(FC)≥2筛选出差异表达基因。 结果与结论:成功建立脊髓损伤的动物模型并获得相应的组织标本。9组标本总RNA的质量均能满足基因芯片检测要求。基因芯片结果显示:在10个Cathepsin基因家族成员中,仅Cathepsin Z和proathepsin E 在创伤后呈现差异性表达,Cathepsin C、D、F、K、L、S和W表达均无差异。甲基强的松龙冲击治疗后Cathepsin家族基因表达均无差异(在药物组与模型组的比较)。提示Cathepsin Z和E参与了脊髓损伤早期凋亡过程,但大剂量甲基强的松龙并不能通过溶酶体凋亡途径发挥神经保护作用。  相似文献   

9.
《Neuroscience》1999,95(1):119-126
In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABAA receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABAA receptor subunits (α1–4, β1–3, γ1–3 and δ) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of α1 and β2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11±4% and 17±1%, respectively), and significantly reduced in the globus pallidus (18±3% and 16±3%, respectively) and parafascicular nucleus (19±3% and 16±5%, respectively). Smaller changes in the messenger RNA levels encoding the α1 subunit in the lateral amygdala (8±1% decrease) and the α4 and γ2 subunits in the striatum (10±2% and 6±1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABAA receptor subunit gene expression occurs following a nigrostriatal tract lesion.The changes in expression of the α1 and β2 subunit genes probably contribute to the documented changes in GABAA receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.  相似文献   

10.
Recent studies have suggested that increased oxidative stress is a potential etiology in Parkinson’s disease (PD). In this study, we investigated whether acupuncture regulates antioxidants in the striatum (ST) of a PD mouse model. Male C57BL/6 mice were administered 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneally once a day for 5 days and given acupuncture stimulation at SI3 or GB34 (Yanglingquan) was for 12 consecutive days. Dopaminergic neuronal survival in the nigrostriatal pathway and DJ-1 expression in the ST was evaluated by immunostaining, and the activities of superoxide dismutase (SOD) and catalase (CAT) in the ST was by enzyme-linked immunosorbent assay. MPTP administration induced dopaminergic neuronal death in the nigrostriatal pathway, which was suppressed by acupuncture stimulation at GB34. MPTP administration also suppressed DJ-1 expression and SOD and CAT activities in the ST, which were restored by acupuncture stimulation at GB34. These results indicate that the neuroprotective effect of acupuncture stimulation is due to regulation of the antioxidants.  相似文献   

11.
In situ hybridization histochemistry was used to show the distribution of messenger RNA for central cannabinoid CB 1 receptors in dorsal root ganglia of the rat. CB1 messenger RNA was highly expressed in neuronal subpopulations of rat dorsal root ganglia. The phenotypes of neurons that express messenger RNA for CB1 were subsequently examined by combining a 35S-labeled ribonucleotide probe for CB1 messenger RNA with digoxigenin-labeled riboprobes for preprotachykinin A (substance P precursor), alpha-calcitonin gene-related peptide and preprosomatostatin (somatostatin precursor) messenger RNAs. Qualitative examination revealed expression of CBI messenger RNA predominantly in medium-and large-sized cells distributed throughout the dorsal root ganglia. The majority of neurons expressing substance P messenger RNA were CB1 messenger RNA negative and smaller in size than the CB1 messenger RNA-positive cells. Only 13% of substance P messenger RNA-positive cells expressed CB1 messenger RNA. A similar degree of co-localization was observed with alpha-calcitonin gene-related peptide: 10% of cells expressing messenger RNA for this neuropeptide were CB1 messenger RNA positive. Co-localization of CB1 and somatostatin messenger RNAs was observed in less than 0.5% of somatostatin messenger RNA-positive cells. The data suggest that subpopulations of neurons in rat dorsal root ganglia are capable of synthesizing cannabinoid receptors and inserting them on terminals in the superficial dorsal horn. These findings provide anatomical evidence for cannabinoid modulation of primary afferent transmission. Although an anatomical basis for cannabinoid-mediated suppression of release of neurogenic peptides from nociceptive primary afferents is provided, our results demonstrate that the majority of CB messenger RNA-positive neurons in the dorsal root ganglia contain transmitters and/or neuromodulators other than the neuropeptides examined herein.  相似文献   

12.
Kahweol is a compound derived from coffee with reported antinociceptive effects. Based on the few reports that exist in the literature regarding the mechanisms involved in kahweol-induced peripheral antinociceptive action, this study proposed to investigate the contribution of the endocannabinoid system to the peripheral antinociception induced in rats by kahweol. Hyperalgesia was induced by intraplantar injection of prostaglandin E2(PGE2) and was measured with the paw pressure test. Kahweol and the drugs to test the cannabinoid system were administered locally into the right hind paw. The endocannabinoids were purified by open-bed chromatography on silica and measured by LC-MS. Kahweol (80 µg/paw) induced peripheral antinociception against PGE2-induced hyperalgesia. This effect was reversed by the intraplantar injection of the CB1 cannabinoid receptor antagonist AM251 (20, 40, and 80 μg/paw), but not by the CB2 cannabinoid receptor antagonist AM630 (100 μg/paw). Treatment with the endocannabinoid reuptake inhibitor VDM11 (2.5 μg/paw) intensified the peripheral antinociceptive effect induced by low-dose kahweol (40 μg/paw). The monoacylglycerol lipase (MAGL) inhibitor, JZL184 (4 μg/paw), and the dual MAGL/fatty acid amide hydrolase (FAAH) inhibitor, MAFP (0.5 μg/paw), potentiated the peripheral antinociceptive effect of low-dose kahweol. Furthermore, kahweol increased the levels of the endocannabinoid anandamide, but not of the other endocannabinoid 2-arachidonoylglycerol nor of anandamide-related N-acylethanolamines, in the plantar surface of the rat paw. Our results suggested that kahweol induced peripheral antinociception via anandamide release and activation of CB1 cannabinoid receptors and this compound could be used to develop new drugs for pain relief.  相似文献   

13.
This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD.  相似文献   

14.
In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABA(A) receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABA(A) receptor subunits (alpha(1-4), beta(1-3), gamma(1-3) and delta) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of alpha1 and beta2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11 +/- 4% and 17 +/- 1%, respectively), and significantly reduced in the globus pallidus (18 +/- 3% and 16 +/- 3%, respectively) and parafascicular nucleus (19 +/- 3% and 16 +/- 5%, respectively). Smaller changes in the messenger RNA levels encoding the alpha1 subunit in the lateral amygdala (8 +/- 1% decrease) and the alpha4 and gamma2 subunits in the striatum (10 +/- 2% and 6 +/- 1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABA(A) receptor subunit gene expression occurs following a nigrostriatal tract lesion. The changes in expression of the alpha1 and beta2 subunit genes probably contribute to the documented changes in GABA(A) receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.  相似文献   

15.
Evidence from clinical and laboratory studies has accumulated indicating that the activation of the cannabinoid system is crucial for steatosis, especially in non-alcoholic fatty liver disease. However, the association between hepatitis C virus (HCV) infection and the cannabinoid system has not been well investigated and it is unclear whether steatosis in chronic hepatitis C develops via activation of the endocannabinoid/cannabinoid receptor signaling pathway. In this study, we examined the expression of a cannabinoid receptor (CB1) and the lipid accumulation in the hepatic Huh7 cell line, expressing HCV genes. We utilized Huh7/Rep-Feo-1b cells stably expressing HCV non-structural proteins (NS) 3, NS4, NS5A, and NS5B, as well as Tet-On Core-2 cells, in which the HCV core protein expression is inducible. Significantly higher levels of stored triglycerides were found in Huh7/Rep-Feo-1b cells compared to Huh7 cells. Also, triglyceride accumulation and CB1 receptor expression were down-regulated in Huh7/Rep-Feo-1b cells after HCV reduction by IFNα. Moreover, lipid accumulation appeared to increase after CB1 agonist treatment, while it decreased after CB1 antagonist treatment, although significant differences were not found compared to untreated cells. In Tet-On Core-2 cells, induction of HCV core protein expression did not affect CB1 expression or triglyceride accumulation. The results of this study in cultured cells suggest that HCV infection may activate the cannabinoid system and precede steatosis, but the core protein by itself may not have any effect on the cannabinoid system.  相似文献   

16.
Although the long-term neurobiological and behavioral effects of nigrostriatal lesions are well characterized, the events occurring soon after injury are not. These acute events can provide insight into the mechanisms underlying long-term adaptations to nigrostriatal lesions. The present experiments examined the basal ganglia immediate-early gene response to infusions of the catecholamine neurotoxin 6-hydroxydopamine into the nigrostriatal pathway in rats. Following 6-hydroxydopamine infusions into the medial forebrain bundle in awake, behaving rats, there was a rapid and transient induction of striatal c-fos and zif/268 messenger RNAs. Both immediate-early genes were maximally induced by 45min post-infusion, and returned to control levels by 1.5h (c-fos) or 3h (zif/268) post-infusion. Double-labeling experiments revealed that striatal c-fos expression occurred preferentially in preproenkephalin-expressing neurons. 6-Hydroxydopamine-induced c-fos messenger RNA was also observed in the substantia nigra pars reticulata and entopeduncular nucleus, but not the globus pallidus, 45 min after medial forebrain bundle 6-hydroxydopamine infusions. Finally, the role of ionotropic striatal glutamate receptors in nigrostriatal injury-induced striatal c-fos was examined by combining medial forebrain bundle 6-hydroxydopamine infusions with intrastriatal glutamate antagonist infusions. Both the N-methyl-D-aspartate antagonist, (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, and the non-N-methyl-D-aspartate antagonist, 6,7-dinitroquinoxaline-2, 3-dione, blocked striatal induction of c-fos messenger RNA following 6-hydroxydopamine infusions into the medial forebrain bundle.These results provide evidence of rapidly developing, glutamate-dependent molecular responses in the basal ganglia which may contribute to some of the well-described long-term adaptations of this system to nigrostriatal injury.  相似文献   

17.
We recently characterized the rat brain homolog of mouse muscle CArG-binding protein A initially identified in C2 myogenic cells and showed an inverse temporal correlation between increased expression levels of this messenger RNA, c-fos and zif268 messenger RNA levels following the addition of nerve growth factor to PC12 cells. In addition, we found an inverse correlation between c-Fos protein and CArG-binding protein A messenger RNA levels in the lateral caudate-putamen of rats treated acutely and chronically with the D2 receptor antagonist fluphenazine (phenothiozine typical psychotic). To determine whether D1 receptor stimulation is also capable of inducing CArG-binding protein A up-regulation, drug naive or dopamine-depleted (i.e. 6-hydroxydopamine-lesioned) D1 hypersensitized rats (i.e. rats given repeated daily injections of SKF-82958 for 14days) were acutely injected with the D1 agonist SKF-82958 and examined using a combination of in situ hybridization for CArG binding protein A and immunocytochemistry for c-Fos. Both acutely treated animals and dopamine-depleted hypersensitized animals showed increases in CArG-binding protein A. Moderate increases were found in the medial caudate-putamen and nucleus accumbens core and shell regions following acute treatment whereas large increases in CArG-binding protein A expression levels were found in the medial and lateral caudate-putamen and the shell and core of the nucleus accumbens following hypersensitization. No change in CArG-binding protein A expression level was found in the dopamine-depleted, drug naive animals relative to controls. Regions of the basal ganglia where increases in CArG-binding protein A were detected following each treatment correlated perfectly with c-Fos protein induction.The results demonstrate that CArG-binding protein A responds to SKF-82958 and that the changes in CArG-binding protein A match perfectly with the pattern of c-Fos induction induced by the D1 agonist.  相似文献   

18.
Neurotrophic factors are known to promote neuronal survival during development and after acute brain injury. Recent data suggest that some neuropeptides also exhibit neurotrophic activities, as shown for the pituitary adenylate cyclase activating polypeptide, which increases the survival of various neuronal populations in culture. Employing in situ hybridization techniques, we have studied the regulation of messenger RNA for pituitary adenylate cyclase activating polypeptide and its receptor type 1 after a moderate traumatic brain injury to rat brain cortex. We have further compared their messenger RNA expression to that of brain-derived neurotrophic factor and to the amount of cell death occurring in the brain at various times after the brain injury. Levels of brain-derived neurotrophic factor messenger RNA increased rapidly within 2 h after trauma in cortex and hippocampus, and returned to control levels thereafter. The levels of messenger RNA for pituitary adenylate cyclase activating polypeptide also increased with time in the injured brains and reached maximal expression at 72 h, i.e. the end of the observation period. The alterations in pituitary adenylate cyclase activating polypeptide messenger RNA levels were particularly pronounced in the perifocal region and in the ipsilateral dentate gyrus of the brain injury. In contrast, the messenger RNA levels encoding pituitary adenylate cyclase activating polypeptide receptor type 1 first decreased after trauma and were then normalized in the dentate gyrus. There was a large increase in the number of cells labelled for DNA breaks at 12 h post-trauma, indicative of enhanced cell death. The number of labelled cells, however, decreased at later stages concomitant with an increase in the expression of pituitary adenylate cyclase activating polypeptide messenger RNA. Pituitary adenylate cyclase activating polypeptide rescued cortical neurons in cultures against ionomycin-induced cell death, supporting the concept of a neuroprotective effect for the peptide. These results demonstrate a differential regulation of messenger RNA for brain-derived neurotrophic factor and the pituitary adenylate cyclase activating polypeptide and its receptor after brain trauma. The data also suggest that pituitary adenylate cyclase activating polypeptide might have a beneficial effect in brain injury by counteracting neuronal cell death.  相似文献   

19.
Ganguly A  Keefe KA 《Neuroscience》2001,103(2):405-412
Striatal efferent neurons receive dopamine- and glutamate-utilizing afferents. Previous studies have shown that dopamine depletion increases gene expression in striatopallidal neurons and decreases it in striatonigral neurons. Previous work has also reported increased expression of the 2A subunit of the N-methyl-D-aspartate receptor in the dopamine-depleted striatum. The purpose of this study therefore was to determine whether dopamine depletion differentially alters the expression of the 2A subunit of the N-methyl-D-aspartate receptor in rat striatal neurons. 6-Hydroxydopamine (8microg/2microl) was infused unilaterally into the medial forebrain bundle. Rats were killed three weeks later. Double-label in situ hybridization was performed using an 35S-labeled ribonucleotide probe directed against the messenger RNA of the 2A subunit and a digoxigenin-labeled ribonucleotide probe directed towards preproenkephalin messenger RNA to mark striatopallidal neurons. Analysis of single-labeled film autoradiograms revealed a significant increase in the expression of 2A subunit messenger RNA in the ipsilateral, but not the contralateral, striatum of dopamine-depleted animals, consistent with other studies in the literature. Cellular analysis of 2A subunit expression indicated that as a consequence of dopamine depletion there is a significant increase in the expression of this subunit in both enkephalin-positive and enkephalin-negative neurons. From this study we conclude that dopamine depletion increases messenger RNA expression of the 2A subunit of the N-methyl-D-aspartate receptor in striatopallidal and presumed striatonigral (enkephalin-negative) neurons. Such alterations may affect the pharmacology and function of the resultant receptor, and thus alter glutamate transmission in both populations of medium spiny neurons after dopamine depletion.  相似文献   

20.
Cannabinoid receptors undergo axonal flow in sensory nerves.   总被引:6,自引:0,他引:6  
A G Hohmann  M Herkenham 《Neuroscience》1999,92(4):1171-1175
Cannabinoids modulate nociceptive processing through central and peripheral mechanisms. The present study was conducted to evaluate axonal flow of cannabinoid receptors from the dorsal root ganglion to the periphery and to identify the putative involvement of CB1 and/or CB2 receptor subtypes. The sciatic nerve was tightly ligated to dam the flow of cannabinoid receptors to the periphery. The densities of cannabinoid receptors proximal and distal to one or two tightly constrictive ligatures was evaluated using in vitro receptor binding and high-resolution emulsion autoradiography. In both models, [3H]CP55,940 binding accumulated proximal as opposed to distal to the ligature. These data indicate that axonal transport of cannabinoid receptors to the periphery was occluded by tight constriction of the sciatic nerve. In situ hybridization histochemistry revealed that dorsal root ganglia cells synthesize CB1 but not CB2 receptor messenger RNA. By contrast, CB2 messenger RNA was highly expressed in sections of rat spleen that were processed together with the dorsal root ganglia, as previously described. These data demonstrate that neuronal cannabinoid CB1 receptors are synthesized in cells of the dorsal root ganglia and inserted on terminals in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号