首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method to construct amperometric immunosensor for human serum chorionic gonadotrophin (hCG) has been described. In this study, horseradish peroxidase (HRP), Pt nanoparticles and secondary antibody (Ab2) modified MSN (Pt@MSN/HRP/Ab2) was synthesized and the multifunctional MSN was used as label for the preparation of immunosensor. With the hCG primary antibody immobilized onto thionine/graphene modified glassy carbon electrode (GCE) via crosslinking with glutaraldehyde, the electrochemical immunosensor was able to realize a reliable determination of hCG in the range of 0.01-12 ng mL−1 with a detection limit of 7.50 pg mL−1. This immunoassay system has many desirable merits including high sensitivity, accuracy, and little instrumentation requirement. Significantly, the new method may be quite promising, with potentially broad applications for clinical immunoassays.  相似文献   

2.
A novel electrochemical biosensing platform was developed based on the modification of biocompatible hybrid film of β-cyclodextrin (β-CD) and ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) onto glass carbon electrode (GCE). Then an unmediated biosensor was successfully prepared by immobilizing the horseradish peroxidase (HRP) into the β-CD/ILs composite film. β-CD could provide a biocompatible microenvironment for HRP, and ILs could accelerate the electron transfer between HRP and the electrode. Results showed that the HRP entrapped in the β-CD/ILs film could maintain its native structure and the direct electrochemistry of HRP were facilely achieved. A couple of well-defined redox peaks of HRP were observed at about −0.32 V (vs. SCE), corresponding to the protein heme Fe(III)/Fe(II) redox couples. The electrocatalysis of this biosensor to both quercetin and hydrogen peroxide was characterized. The biosensor exhibited a low operating potential (−0.05 V vs. SCE), fast amperometric response, high sensitivity, good selectivity and sub-micromolar limit of detection.  相似文献   

3.
In this paper, highly ordered titania nanotube (TNT) arrays fabricated by anodization were annealed at different temperatures in CO to create different concentrations of surface defects. The samples were characterized by SEM, XRD and XPS. The results showed different concentrations of Ti3+ defects were doped in TNT arrays successfully. Furthermore, after co-immobilized with horseradish peroxidase (HRP) and thionine chloride (Th), TNT arrays was employed as a biosensor to detect hydrogen peroxide (H2O2) using an amperometric method. Cyclic voltammetry results and UV-Vis absorption spectra presented that with an increase of Ti3+ defects concentration, the electron transfer rate and enzyme adsorption amount of TNT arrays were improved largely, which could be ascribed to the creation of hydroxyl groups on TNT surface due to dissociative adsorption of water by Ti3+ defects. Annealing in CO at 500 °C appeared to be the most favorable condition to achieve desirable nanotube array structure and surface defects density (0.27%), thus the TNT arrays showed the largest adsorption amount of enzyme (9.16 μg/cm2), faster electron transfer rate (1.34 × 10−3 cm/s) and the best response sensitivity (88.5 μA/mM l−1).  相似文献   

4.
A low-cost, flexible, and disposable immunosensor is presented in this paper. The single-walled carbon nanotubes (SWNTs) and biomolecules are self-assembled between two micro-patterned electrodes. The immuno-chip acts as a platform of a horseradish peroxidase (HRP) labeled sandwiched Enzyme-Linked ImmunoSorbent Assay (ELISA). The pH change induced by the biochemical reactions influences the electrical conductance of SWNT. A detection resolution of 0.4 ng/ml (2.5 pM) for normal rabbit immunoglobulin G (IgG) is demonstrated. The new fabrication technique and the HRP labeled detection protocol can be extended to the recognition of other antigens for critical applications to clinical diagnosis, food toxin detection, and environment monitoring.  相似文献   

5.
In this paper, we presented a carbon tetrachloride gas sensor with strong cataluminescence response based on Ag2Se nanomaterial, which was synthesized via the electrodeposition on the surface of Al foil by directly using a non-aqueous dimethyl sulfoxide (DMSO) solution with CH3COOAg and SeCl4. The deposited Ag2Se material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the prepared Ag2Se material along with the Al foil substrate was employed to design the carbon tetrachloride gas sensor. Under the optimized conditions, the present gas sensor exhibited a broad linear range of 0.9-228 μg mL−1, with a limit of detection of 0.3 μg mL−1 (S/N = 3). The proposed gas sensor showed good characteristics with high selectivity, fast response and long lifetime.  相似文献   

6.
A molecular layer with low non-specific binding enabling determination of low concentrations of 3,4-methylenedioxymethamphetamine (MDMA) by the displacement of antibodies has been developed. Antibody Fab′-fragments at various concentrations have been site-directly immobilised on gold and intercalated with a hydrophilic non-ionic polymer that reduces non-specific binding. Bovine serum albumin conjugated with MDMA and various concentrations of anti-MDMA antibodies were bound to the layer. The amount of conjugates and antibodies bound was dependent on the amount of Fab′-fragments in the layer. Antibodies were also bound to the conjugates physisorbed directly onto the gold surface and in mixtures with the polymer or with a lipoamide. A high displacement of antibodies was observed by surface plasmon resonance (SPR) on interaction of MDMA with the different layers in buffer solution. No displacement could, however, be observed in saliva with the pure conjugate layer because of a high non-specific binding of proteins. When the conjugates were coupled to the surface through the antibody Fab-fragment/polymer layer, MDMA concentrations as low as 0.02 ng mL−1 (0.14 nM) could easily be detected in buffer. In diluted saliva the lowest limit of detection was 0.4 ng mL−1 enabling determination of drugs from saliva with a cut-off concentration of 2 ng mL−1. The molecular layer of antibody Fab′-fragments and polymer thus shows great potential for binding conjugates and antibodies that can be displaced on the interaction with very low concentrations of small-sized molecules. A low non-specific binding is guaranteed by the presence of the hydrophilic polymer.  相似文献   

7.
A new dopamine-derivative, i.e. N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide (N-DHPB), was synthesized and its application was investigated for the simultaneous determination of N-acetylcysteine (NAC) and acetaminophen (AC) using modified multiwall carbon nanotubes paste electrode. This modified electrode exhibited a potent and persistent electron mediating behavior followed by well separated oxidation peaks of NAC and AC. The peaks current of differential pulse voltammograms of NAC and AC increased linearly with their concentration in the ranges of 0.5-200 μmol L−1 NAC and 15.0-270 μmol L−1 AC. The detection limits for NAC and AC were 0.2 μmol L−1 and 10.0 μmol L−1, respectively. The relative standard deviation for seven successive assays of 1.0 and 30.0 μmol L−1 NAC and AC were 1.7% and 2.2%, respectively. The proposed sensor was successfully applied for the determination of NAC in human urine, tablet, and serum samples.  相似文献   

8.
For the first time a novel derivatized multi-walled carbon nanotubes-based Pb2+ carbon paste electrode is reported. The electrode with optimum composition, exhibits an excellent Nernstian response to Pb2+ ion ranging from 5.9 × 10−10 to 1.0 × 10−2 M with a detection limit of 3.2 × 10−10 M and a slope of 29.5 ± 0.3 mV dec−1 over a wide pH range (2.5-6.5) with a fast response time (25 s) at 25 °C. Moreover, it also shows a high selectivity and a long life time (more than 3 months). Importantly, the response mechanism of the proposed electrode was investigated using AC impedance technique. Finally, the electrode was successfully applied for the determination of Pb2+ ion concentration in environmental samples, e.g. soils, waste waters, lead accumulator waste and black tea, and for potentiometric titration of sulfate anion.  相似文献   

9.
The magnetic core-shell Au-Fe3O4@SiO2 nanocomposite was prepared by layer-by-layer assembly technique and was used to fabricate a novel bienzyme glucose biosensor. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were simply mixed with Au-Fe3O4@SiO2 nanocomposite and cross-linked on the ITO magnetism-electrode with nafion (Nf) and glutaraldehyde (GA). The modified electrode was designated as Nf-GOD-HRP/Au-Fe3O4@SiO2/ITO. The effects of some experimental variables such as the pH of supporting electrolyte, enzyme loading, the concentration of the mediator methylene blue (MB) and the applied potential were investigated. The electrochemical behavior of the biosensor was studied using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry. Under the optimized conditions, the biosensor showed a wide dynamic range for the detection of glucose with linear ranges of 0.05-1.0 mM and 1.0-8.0 mM, and the detection limit was estimated as 0.01 mM at a signal-to-noise ratio of 3. The biosensor exhibited a rapid response, good stability and anti-interference ability. Furthermore, the biosensor was successfully applied to detect glucose in human serum samples, showing acceptable accuracy with the clinical method.  相似文献   

10.
An amperometric oxalate biosensor using nanohybrid film of multi-walled carbon nanotubes (MWCNTs) and gold colloidal nanoparticles (GNPs) via carbodiimide chemistry by forming amide linkages between carboxylic acid groups on the CNTs and amine residues of cysteamine self-assembled monolayer (SAM) has been prepared. The c-MWCNTs were immobilized on the gold (Au) electrode and characterized by FTIR. The morphologies of the c-MWCNT/Au and GNPs/MWCNT/Au electrodes were investigated by scanning electron microscopy (SEM) and the electrochemical performance of the Au, c-MWCNT/Au and GNPs/c-MWCNT/Au electrodes were also studied amperometrically. The Cl and NO3 insensitive oxalate oxidase from grain sorghum was finally immobilized on this electrode. The influence of pH, temperature and oxalate concentration on electrode activity was studied. The electrode showed optimum response within 7 s. The electrocatalytic response showed a linear dependence on the oxalic acid concentration ranging from 1 to 800 μM with a detection limit of 1 μM. The Km value for the oxalic acid sensor was 444.44 μM. The enzyme electrode retained 30% of its initial activity after 5 months, when stored at 4 °C. The electrode was employed for measurement of oxalic acid in serum, urine and foodstuffs.  相似文献   

11.
4-Nonylphenol (4-NP) was reported to affect the health of wildlife and humans through altering endocrine function. A novel electrochemical sensor for sensitive and fast determination of 4-NP was developed. Titanium oxide (TiO2) nanoparticles and gold nanoparticles (AuNPs) were introduced for the enhancement of electron conduction and sensitivity. 4-NP-imprinted functionalized AuNPs composites with specific binding sites for 4-NP was modified on electrode. The resulting electrodes were characterized by cyclic voltammetry (CV). Rebinding experiments were carried out to determine the specific binding capacity and selective recognition. The linear range was over the range from 4.80 × 10−4 to 9.50 × 10−7 mol L−1, with the detection limit of 3.20 × 10−7 mol L−1 (S/N = 3). The sensor was successfully employed to detect 4-NP in real samples.  相似文献   

12.
A novel label-free electrochemical immunosensor for sensitive detection of kanamycin based on water-soluble graphene sheet (WGS)/prussian blue-chitosan (PB-CTS)/nanoporous gold (NPG) composited film has been reported. PB was selected as an electron transfer mediator, and was modified onto the electrode together with WGS through electrostatic adsorption. Then NPG was immobilized onto the as-prepared film for biomolecules anchoring. The electroactivity of PB was greatly enhanced in the presence of WGS and NPG. It could mainly be ascribed to the fact that the good conductivity of WGS and NPG promoted electron transfer and enhanced the sensitivity. kanamycin antibody, as a model, was immobilized onto the composite film for the detection of kanamycin. Under optimum conditions, the amperometric signal of PB decreased linearly with kanamycin concentration (0.02-14 ng mL−1), a linear calibration plot (y = 1.3817 + 4.7544x, r = 0.9993), resulting in a low limit of detection (6.31 pg mL−1). The novel immunosensor for the detection of kanamycin in real sample with satisfactory results has been proved. In addition, this method would be easily adapted for the detection of other residual antibiotics in animal derived foods.  相似文献   

13.
In this paper, a stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene) (PEDOT)-single walled carbon nanotubes (SWCNT)/ascorbate oxidase (AO)/Nafion films for detection of l-ascorbic acid (AA) was successfully developed. PEDOT-SWCNT nanocomposite and Nafion films were used as inner and outer films, respectively. AO was immobilized between these two films. The PEDOT-SWCNT nanocomposite films were characterized by electrochemical impedance spectroscopy and scanning electron microscopy. The influence of detection potential and temperature on the biosensor performance was examined in detail. Despite the multilayer configuration, the biosensor exhibited a relatively fast response (less than 10 s) and a linear range from 1 μM to 18 mM (a correlation coefficient of 0.9974). The sensitivity of the biosensor was found to be 28.5 mA M−1 cm−2. Its experimental detection limit was 0.7 μM (S/N = 3) and the apparent Michaelis-Menten constant (Km) was calculated to be 18.35 mM. Moreover, the biosensor exhibited good anti-interferent ability and excellent long-term stability. All the results showed that such sandwich-type PEDOT-SWCNT/AO/Nafion films could provide a promising platform for the biosensor designs for AA detection.  相似文献   

14.
A simple and new way to immobilize glucose dehydrogenase (GDH) enzyme onto nile blue (NB) covalently assembled on the surface of functionalized single-walled carbon nanotubes (f-SWCNTs) modified glassy carbon (GC) electrode (GDH/NB/f-SWCNTs/GC electrode) was described. The GDH/NB/f-SWCNTs/GC electrode possesses promising characteristics as glucose sensor; a wide linear dynamic range of 100-1700 μM, low detection limit of 0.3 μM, fast response time (1-2 s), high sensitivity (14 μA cm−2 mM−1), anti-interference ability and anti-fouling. Moreover, the performance of the GDH/NB/f-SWCNTs/GC bioanode was successfully tested in a glucose/O2 biofuel cell. The maximum power density delivered by the assembled glucose/O2 biofuel cell could reach 32.0 μW cm−2 at a cell voltage of 0.35 V with 40 mM glucose. The present procedure can be applied for preparing a potential platform to immobilize different enzymes for various bioelectrochemical applications.  相似文献   

15.
A glassy carbon electrode modified with functionalized multiwalled carbon nanotubes (CNTs) immobilized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) in a dihexadecylphosphate film was prepared and characterized by cyclic voltammetry and scanning electron microscopy. It was used as a support for FAD or glucose oxidase (GOx) immobilization with EDC/NHS crosslinking agents. Cyclic voltammetry of GOx immobilized onto the surface of CNTs showed a pair of well-defined redox peaks, which correspond to the direct electron transfer of GOx, with a formal potential of −0.418 V vs. Ag/AgCl (3 M KCl) in 0.1 M phosphate buffer solution (pH 7.0). An apparent heterogeneous electron transfer rate constant of 1.69 s−1 was obtained. The dependence of half wave potential on pH indicated that the direct electron transfer reaction of GOx involves a two-electron, two-proton transfer. The determination of glucose was carried out by square wave voltammetry and the developed biosensor showed good reproducibility and stability. The proposed method could be easily extended to immobilize and evaluate the direct electron transfer of other redox enzymes or proteins.  相似文献   

16.
A simple and sensitive method based on square wave voltammetry (SWV) at single-walled carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of adenine and adenosine-5′-monophosphate (5′-AMP). The modified electrode exhibits remarkable electrocatalytic properties towards adenine and 5′-AMP oxidation with a peak potential of ∼850 and 1165 mV respectively. Linear calibration curves are obtained over the concentration range of 5-100 nM for adenine and 10-100 nM for 5′-AMP with sensitivity of 677 and 476 nA nM−1 for adenine and 5′-AMP respectively. The limit of detection for adenine and 5′-AMP was found to be 37 × 10−10 M and 76 × 10−10 M, respectively. The effect of pH revealed that the oxidation of adenine and 5′-AMP at SWNT modified EPPGE involved equal number of electrons and protons. The modified electrode exhibited high stability and reproducibility.  相似文献   

17.
An antigen (Ag), CFP-10, found in tissue fluids of tuberculosis (TB) patients may be an ultimate candidate for use as a sensitive TB marker with a sensing method for early simplified diagnosis of TB. In this study, chemical and optical optimizations were carried out using novel immuno-materials for establishment of a self-assembled surface plasmon resonance (SPR) optical immunosensor system for detection of CFP-10, which is valuable for pre-clinical work, prior to conduct of massive clinical observations. For creation of a simple sensing interface, a monoclonal antibody (anti-CFP-10) was immobilized directly on a gold surface, followed by blocking with cystamine. Orientation and accessibility of anti-CFP-10 were assessed by the selective binding of CFP-10. Recent results indicate that the reusability of the sensor chip adopting the cystamine method was found to be preferable to other immobilization methods. A linear relationship was well correlated between SPR angle shift and CFP concentrations in the range from 100 ng mL−1 to 1 μg mL−1. Modification of the SPR chip with antibody provides a simple experimental platform for investigation of isolated proteins under experimental conditions resembling those of their native environment.  相似文献   

18.
An ultrasensitive electrochemical immunosensor based on chitosan-iron oxide-poly(amino-amine) dendrimers-gold nanoparticles (CS-Fe3O4-PAMAM-GNPs) nanocomposites and horseradish peroxidase-multiwall carbon nanotubes-antibody (HRP-MWCNTs-Ab) bioconjugates was developed for the detection of salbutamol (SAL). CS-Fe3O4-PAMAM-GNPs nanocomposites as immobilization matrix were used to enhance the electroactivity and stability of the electrode. HRP-MWCNTs-Ab bioconjugates as label were used to improve catalytic activity for hydrogen reduction of the electrode. Under the optimized conditions, a calibration plot for SAL was obtained with a linear range between 0.11 ng/mL and 1061 ng/mL (r = 0.9984). The detection limit was 0.06 ng/mL. The immunosensor was examined in real samples for the analysis of SAL.  相似文献   

19.
A simple, sensitive and selective colorimetric biosensor for the detection of dopamine (DA) was demonstrated with a 58-mer dopamine-binding aptamer (DBA) as recognition element and unmodified gold nanoparticles (AuNPs) as probes. Upon the addition of DA, the conformation of DBA would change from a random coil structure to a rigid tertiary structure like a pocket and this change has been demonstrated by circular dichroism spectroscopic experiments. Besides, the conformational change of DBA could facilitate salt-induced AuNP aggregation and lead to the color change of AuNPs from red to blue. The calibration modeling showed that the analytical linear range covered from 5.4 × 10−7 M to 5.4 × 10−6 M and the corresponding limit of detection (LOD) was 3.6 × 10−7 M. Some common interferents such as 3,4-dihydroxyphenylalanine (DOPA), catechol, epinephrine (EP), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and ascorbic acid (AA) showed no or just a little interference in the determination of DA.  相似文献   

20.
A novel Ti/Sb-SnO2/PbO2 composite electrode was fabricated for COD determination. The new electrode configuration improved the sensitivity of the amperometric method apparently. Effects of common experimental parameters, such as applied potential, pH and concentration of the electrolyte on its analytical performance were investigated. A linear range of 0.5-200 mg L−1 COD and a detection limit (a signal-to-noise ratio of 3) of 0.3 mg L−1 were achieved under optimized conditions. The experiments for detecting COD in model samples and real samples were carried out to evaluate the electrode's performance. The obtained results were in good agreement with those determined by the standard dichromate method, with a relative error less than 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号