首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
Tin whisker formation of lead-free plated leadframes   总被引:3,自引:1,他引:2  
This paper presents the evaluation results of whiskers on two kinds of lead-free finish materials at the plating temperature and under the reliability test. The rising plating temperature caused increasing the size of plating grain and shorting the growth of whisker. The whisker was grown under the temperature cycling the bent shaped in matte pure Sn finish and hillock shape in matte Sn–Bi. The whisker growth in Sn–Bi finish was shorter than that in Sn finish. In FeNi42 leadframe, the 8.0–10.0 μm diameter and the 25.0–45.0 μm long whisker was grown under 300 cycles. In the 300 cycles of Cu leadframe, only the nodule-shaped grew on the surface, and in the 600 cycles, a 3.0–4.0 μm short whisker grew. After 600 cycles, the 0.25 μm thin Ni3Sn4 formed on the Sn-plated FeNi42. However, we observed the amount of 0.76–1.14 μm thick Cu6Sn5 and 0.27 μm thin Cu3Sn intermetallics were observed between the Sn and Cu interfaces. Therefore, the main growth factor of a whisker is the intermetallic compound in the Cu leadframe, and the coefficient of thermal expansion mismatch in FeNi42.  相似文献   

2.
Sn whiskers are becoming a serious reliability issue in Pb-free electronic packaging applications. Among the numerous Sn whisker mitigation strategies, minor alloying additions to Sn have been proven effective. In this study, several commercial Sn and Sn-Ag baths of low-whisker formulations are evaluated to develop optimum mitigation strategies for electroplated Sn and Sn-Ag. The effects of plating variables and storage conditions, including plating thickness and current density, on Sn whisker growth are investigated for matte Sn, matte Sn-Ag, and bright Sn-Ag electroplated on a Si substrate. Two different storage conditions are applied: an ambient condition (30°C, dry air) and a high-temperature/high-humidity condition (55°C, 85% relative humidity). Scanning electron microscopy is employed to record the Sn whisker growth history of each sample up to 4000 h. Transmission electron microscopy, x-ray diffraction, and focused ion beam techniques are used to understand the microstructure, the formation of intermetallic compounds (IMCs), oxidation, the Sn whisker growth mechanism, and other features. In this study, it is found that whiskers are observed only under ambient conditions for both thin and thick samples regardless of the current density variations for matte Sn. However, whiskers are not observed on Sn-Ag-plated surfaces due to the equiaxed grains and fine Ag3Sn IMCs located at grain boundaries. In addition, Sn whiskers can be suppressed under the high-temperature/high-humidity conditions due to the random growth of IMCs and the formation of thick oxide layers.  相似文献   

3.
Mitigation of Sn Whisker Growth by Small Bi Additions   总被引:1,自引:0,他引:1  
In this study, the morphological development of electroplated matte Sn and Sn-xBi (x = 0.5 wt.%, 1.0 wt.%, 2.0 wt.%) film surfaces was investigated under diverse testing conditions: 1-year room-temperature storage, high temperature and humidity (HTH), mechanical loading by indentation, and thermal cycling. These small Bi additions prevented Sn whisker formation; no whisker growth was observed on any Sn-xBi surface during either the room-temperature storage or HTH testing. In the indentation loading and thermal cycling tests, short (<5 μm) surface extrusions were occasionally observed, but only on x = 0.5 wt.% and 1.0 wt.% plated samples. In all test cases, Sn-2Bi plated samples exhibited excellent whisker mitigation, while pure Sn samples always generated many whiskers on the surface. We confirmed that the addition of Bi into Sn refined the grain size of the as-plated films and altered the columnar structure to form equiaxed grains. The storage conditions allowed the formation of intermetallic compounds between the plated layer and the substrate regardless of the Bi addition. However, the growth patterns became more uniform with increasing amounts of Bi. These microstructural improvements with Bi addition effectively released the internal stress from Sn plating, thus mitigating whisker formation on the surface under various environments.  相似文献   

4.
Tin whisker growth has become a major concern in the electronics industry as banning Lead application. In order to further understanding whisker growth with varied grain structures, three different grain structures (columnar, semi-columnar, and horizontal) and three mixed type deposits were prepared by changing the deposition conditions. The grain structure of deposited layer and intermetallics (IMC) were examined by focused ion beam (FIB) and chemical etching. After 4000 h of testing in 55 °C with 85% RH, whisker growth on the columnar sample was easily observed, and caused by the wedge type IMC. The semi-columnar tin grains formed small amounts of long straight whiskers accompanied with hillocks, and also seeing uneven IMC. The horizontal type tin grains formed only hillocks, accordingly finding the IMC more uniform than the others. Mixed grain structures were prepared, and consisted of different structures on the top and bottom layers. The top layer dominates the forms of whiskers or hillocks, owing to the grain boundary guiding the diffusion of tin atoms, and the bottom layer affects the density of whiskers or hillocks due to local stress building up from the formation of intermetallic phase.  相似文献   

5.
Whisker growth on surface treatment in the pure tin plating   总被引:2,自引:0,他引:2  
Whisker behavior at various surface treatment conditions of pure Sn plating are presented. The temperature cycling test for 600 cycles and the ambient storage for 1 year was performed, respectively. From the temperature cycling test, bent-shaped whiskers were observed on matte and semibright Sn plating, and flower-shaped whisker on bright Sn plating. The bright Sn plating has smaller whiskers than the other types of Sn plating, and the whisker growth density per unit area is also lower than the others. After 1 year under ambient storage, nodule growth of FeNi42 lead frame (LF) was observed in some parts. The Cu LF showed about a 9.0 μm hillock-shaped whisker. This result demonstrated that the main determinant of whisker growth was the number of temperature cycling (TC) in the FeNi42 LF, whereas it was the time and temperature in the Cu LF. Also, whisker growth and shape varied with the type of surface treatment and grain size of plating.  相似文献   

6.
In this study, comparative studies on Sn whisker growth in Sn-0.3Ag-0.7Cu-1Pr solder under different environments were conducted to investigate factors like ambient temperature, oxygen level, and 3.5 wt% NaCl solution on whisker growth. The experimental results revealed that ambient temperature and oxygen level are two important factors that could determine the oxidation rate of PrSn3 phase, thus indirectly affecting the growth rate of Sn whiskers. In addition, mechanisms of whisker growth under these three environments were established from the perspective of atom diffusion based on the “compressive stress-induced” theory. Although whiskers under different environments were all squeezed out from Pr oxides (hydroxides), the forms of their driving forces were different. For whiskers squeezed out in air whether at room temperature or 150 °C, the driving force is the compressive stress produced by lattice expansion due to the oxidation of PrSn3 phase. The representative example was whiskers' growth at 150 °C, which could be simplified as three stages: (1) squeezing out, (2) cracking and (3) bursting out. For whisker growth in 3.5 wt% NaCl solution, the driving force for much fewer whiskers' growth was proposed to come from lateral stress provided by interfacial IMC layer growth. Moreover, Sn nanoparticles and their agglomerations were also found to form under the driving force of the potential difference between Sn atoms and Sn crystals. Their morphologies could also be affected by factors of ambient temperature, oxygen level and Cl ions in corrosive liquid.  相似文献   

7.
Growth behavior of tin whiskers from pure tin and tin-bismuth plated leadframe (LF) packages for elevated temperature and high humidity storages and during thermal cycling was observed. In the storage at 60 °C/93% relative humidity (RH) and 85 °C/85%RH the galvanic corrosion occurred at the outer lead toes and shoulders where the base LF material is exposed, forming tin oxide layers of SnO2. The corroded layers spread inside the film and formed whiskers around the corroded islands. Many whiskers were observed to grow from grain boundaries for the Fe–42Ni alloy (alloy42) LF packages. It was confirmed that the corrosion tends to occur on the side surfaces of outer leads adjacent to the mold flash. The contribution of ionic contaminants in epoxy mold compound (EMC) to the corrosion was not identified. During thermal cycling between −65 °C and +150 °C whiskers grew out of as-deposited grains for pure tin plated alloy42 LF packages and they grew linearly with an increase of number of cycle. Growth mechanisms of the whiskers from grain boundaries and as-deposited grains were discussed from the deformation mechanism map for tin and mathematical calculation with a steady-state diffusion model.  相似文献   

8.
The Sn3.5Ag0.75Cu (SAC) solder joint reliability under thermal cycling was investigated by experiment and finite element method (FEM) analysis. SAC solder balls were reflowed on three Au metallization thicknesses, which are 0.1, 0.9, and 4.0 μm, respectively, by laser soldering. Little Cu–Ni–Au–Sn intermetallic compound (IMC) was formed at the interface of solder joints with 0.1 μm Au metallization even after 1000 thermal cycles. The morphology of AuSn4 IMC with a small amount of Ni and Cu changed gradually from needle- to chunky-type for the solder joints with 0.9 μm Au metallization during thermal cycling. For solder joints with 4 μm Au metallization, the interfacial morphology between AuSn4 and solder bulk became smoother, and AuSn4 grew at the expense of AuSn and AuSn2. The cracks mainly occurred through solder near the interface of solder/IMC on the component side for solder joints with 0.1 μm Au metallization after thermal shock, and the failure was characterized by intergranular cracking. The cracks of solder joints with 0.9 μm Au metallization were also observed at the same location, but the crack was not so significant. Only micro-cracks were found on the AuSn4 IMC surface for solder joints with 4.0 μm Au metallization. The responses of stress and strain were investigated with nonlinear FEM, and the results correlated well with the experimental results.  相似文献   

9.
The lead free Sn–Ag–y%Cu (y = 0.0, 0.5, 1.0 and 2.0) interconnect interfacial microstructures and the microstructure evolution under thermal treatment (isothermal aging, 150 °C/1000 h) were studied in detail by using surface microetching microscopy and cross section microscopy. The corresponding mechanical and reliability behaviors were evaluated by performing shear test and fracture mode analysis before and after the thermal treatment. The results indicate: (i) The interconnects could have different microstructures and intermetallic compound (IMC), depending on the Cu content. The Cu–Sn IMC could have microstructures that were clusters or protrusion-like, Augustine grass leaf-like, scissor-like, tweezers-like, etc. (ii) Ag3Sn IMCs were not observed at time zero for any interconnect groups, but they occurred after the aging for all groups. The Ag3Sn IMC could have different microstructures, again depending on Cu content. For low Cu content, the Ag3Sn IMCs were granules or nodules; for higher Cu content, Ag3Sn IMCs were plate-like. (iii) The growth of Ag3Sn plates was promoted by the growth of Cu–Sn IMCs, but indirectly linked to the Cu content. (iv) High Cu content (1.0 wt% and higher) could degrade the mechanical and reliability performances of the LF interconnect by providing a brittle joint, which was mainly achieved through the substantial growth of Cu–Sn IMCs and Ag3Sn plates.  相似文献   

10.
Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.  相似文献   

11.
Intermetallic compound (IMC) formation at the interface between the tin (Sn) plating and the copper (Cu) substrate of electronic components has been thought to produce compressive stress in Sn electrodeposits and cause the growth of Sn whiskers. To determine if interfacial IMC is a requirement for whisker growth, bright Sn and a Sn-Cu alloy were electroplated on a tungsten (W) substrate that does not form interfacial IMC with the Sn or Cu. At room temperature, conical Sn hillocks grew on the pure Sn deposits and Sn whiskers grew from the Sn-Cu alloy electrodeposits. These results demonstrate that interfacial IMC is not required for initial whisker growth.  相似文献   

12.
The effects of printed-circuit-board (PCB) surface finish and thermomechanical fatigue (TMF) on the formation and growth of intermetallic compounds (IMCs) between small outline J (SOJ) leads and Sn-3.0Ag-0.5Cu solder were investigated. The thickness of the IMC layer formed initially at the as-soldered SOJ/Sn-Ag-Cu interface over a Ni/Au PCB surface finish was about 1.7 times of that over the organic solderability preservative (OSP) PCB surface finish. The parabolic TMF-cycle dependence clearly suggests that the growth processes are controlled primarily by solid-state diffusion. The diffusion coefficient for the growth of the total IMC layer at the SOJ/Sn-Ag-Cu interface over the Ni/Au PCB surface finish is the same as that over the OSP PCB surface finish, and thus, the total IMC layer at the SOJ/Sn-Ag-Cu interface over the Ni/Au PCB surface finish is thicker than that over the OSP PCB surface finish. Using the Cu-Ni-Sn ternary isotherm, the anomalous phenomenon that the presence of Ni retards the growth of the Cu3Sn layer while increasing the initial growth of the Cu6Sn5 layer can be addressed.  相似文献   

13.
Growth behavior of tin whiskers from pure tin and tin–bismuth plated leadframe (LF) packages for elevated temperature and high humidity storages and during thermal cycling was observed. In the storage at 60 °C/93% relative humidity (RH) and 85 °C/85%RH the galvanic corrosion occurred at the outer lead toes and shoulders where the base LF material is exposed, forming tin oxide layers of SnO2. The corroded layers spread inside the film and formed whiskers around the corroded islands. Many whiskers were observed to grow from grain boundaries for the Fe–42Ni alloy (alloy42) LF packages. It was confirmed that the corrosion tends to occur on the side surfaces of outer leads adjacent to the mold flash. The contribution of ionic contaminants in epoxy mold compound (EMC) to the corrosion was not identified. During thermal cycling between −65 °C and +150 °C whiskers grew out of as-deposited grains for pure tin-plated alloy42 LF packages and they grew linearly with an increase of number of cycle. Growth mechanisms of the whiskers from grain boundaries and as-deposited grains were discussed from the deformation mechanism map for tin and mathematical calculation with a steady-state diffusion model.  相似文献   

14.
The mechanism of reaction between Nd and Ga in Sn-Zn-0.5Ga-xNd solder was investigated in order to enhance the reliability of soldered joints. It was found that, after aging treatment at ambient temperature and 125°C for over 3000 h, no Sn whisker growth was observed in Sn-9Zn-0.5Ga-0.08Nd soldered joints. X-ray diffraction (XRD) analysis and thermodynamic calculations indicated that Ga reacted with Nd instead of Sn-Nd intermetallic compound (IMC), eliminating Sn whisker growth. Shear force testing was carried out, and the results indicated that Sn-9Zn-0.5Ga-0.08Nd solder still had excellent mechanical properties after aging treatment. This new discovery can provide a novel approach to develop high-reliability solder without risk of Sn whiskers.  相似文献   

15.
We investigate the influence of pulse-plated Ni barriers, compared to direct current (DC)-plated Ni barriers, on the growth of Sn whiskers in laminated Cu/Ni/Sn samples. The results indicate that the pulse-plated Ni barriers exhibit much better resistance to Sn whisker growth than the DC-plated Ni barriers, i.e., when exposed to ambient of 60°C and 93% relative humidity (RH) for 40 days only a few small hillocks were observed as opposed to the long whiskers and large nodules of Sn for the DC-plated Ni barriers. The underlying mechanisms are addressed based on the texture characteristics of the plated Ni and Sn layers and the formation of intermetallic compounds.  相似文献   

16.
《Microelectronics Reliability》2014,54(11):2494-2500
The formation of intermetallic compound Cu6Sn5 gives rise to the internal stress in the lead-free coating, which causes the growth of Sn whiskers. This phenomenon is characterized with the expansion of inclusion in a plate perfectly bonded between two infinite solids. Based on the grain boundary diffusion mechanism, a model is established to evaluate the growth rate of Sn whiskers. The results show that the growth rate of whisker varies with the relative site between whisker and inclusion. When the distance between the whisker and inclusion exceeds a critical value, negative growth rate will appear, and it approaches zero as the distance increases. They explain some phenomena observed in experiments.  相似文献   

17.
The effects of surface finishes on the in situ interfacial reaction characteristics of ball grid array (BGA) Sn-3.0Ag-0.5Cu lead-free solder bumps were investigated under annealing and electromigration (EM) test conditions of 130°C to 175°C with 5.0 × 103 A/cm2. During reflow and annealing, (Cu,Ni)6Sn5 intermetallic compound (IMC) formed at the interface of electroless nickel immersion gold (ENIG) finish. In the case of both immersion Sn and organic solderability preservative (OSP) finishes, Cu6Sn5 and Cu3Sn IMCs formed. Overall, the IMC growth velocity of ENIG was much lower than that of the other finishes. The activation energies of total IMCs were found to be 0.52 eV for ENIG, 0.78 eV for immersion Sn, and 0.72 eV for OSP. The ENIG finish appeared to present an effective diffusion barrier between the Cu substrate and the solder, which leads to better EM reliability in comparison with Cu-based pad systems. The failure mechanisms were explored in detail via in situ EM tests.  相似文献   

18.
Storage tests at elevated temperature and humidity conditions have been widely adopted as one of the major acceleration tests for Sn whisker growth. However, the driving force associated and the nucleation and growth process of whiskers are yet to be fully understood. In this paper, Sn whisker growth on Cu leadframe material at two different test conditions is compared. Both loose and board-mounted components were used. At each read point, the length and location of every whisker observed was recorded. Statistical characteristics and growth rate of the whisker population will be presented for each of the tests conditions. On loose components, corrosion of the Sn finish was observed near the tip and the dam bar cut area of the leads with backscatter scanning electron microscopy (SEM) and optical microscopy. The entire population of whiskers was located in these corroded areas, and there were zero whiskers located in the noncorroded areas on the same leads. On board-mounted components, the corrosion level of the Sn finish, as well as the whisker population and length was greatly reduced compared to those on the loose components. These results suggest that the corrosion of Sn finish in high-temperature and high-humidity conditions is the major driving force for whisker growth. The cause for the difference between the loose and board-mounted components is also analyzed  相似文献   

19.
This paper presents a design-of-experiments study on the effect of annealing and simulated reflow on tin whisker growth. Copper, brass, and alloy 42 coupons plated with either bright or matte tin were subjected to one of three elevated temperature exposures. After the elevated temperature exposures, specimens along with a set of control specimens were then kept in room ambient conditions and monitored periodically using an environmentally scanning electron microscope. Surface observations up to 16 months of room ambient exposure revealed that tin whiskers formed on the surfaces of each specimen. However, various differences in whisker growth between the matte- and bright tin-plated specimens were observed. Columnar-type whiskers grown on the matte tin plated specimens were initiated from one grain at the surface, as opposed to the growth on bright tin which were independent from the surface morphology. Maximum length and length distribution data for matte and bright tin plating for the various exposures are presented. The result of this study shows annealing to be effective in reducing the maximum length of whiskers, particularly on bright finished coupons  相似文献   

20.
The interfacial reaction of Si die attachment with a high temperature lead-free solder of Zn-xSn (x = 20 wt.%, 30 wt.% and 40 wt.%) was investigated, and the currently used high temperature lead-free solder of Au-20Sn was compared. A sound die attachment to a Cu substrate can be achieved with Zn-Sn solder. No intermetallic compound (IMC) phase was observed in the solder layer, and only primary α-Zn and Sn-Zn eutectic phases were observed. At the interface with the Si die, with a metallization of Au/Ag/Ni, an AgAuZn2, IMC layer was formed along the interface, and the Ni coating layer did not react with the solder. At the interface with the Cu substrate, CuZn5 and Cu5Zn8 IMC layers were confirmed, and their thicknesses can be controlled by soldering conditions. During multiple reflows, the growth of these IMC layers was observed, but no additional voids or cracks were observed. For more reliable die attachment, a titanium nitride (TiN) coating layer was applied to suppress the formation of Cu-Zn IMCs. The Si die attached joint on the TiN-coated Cu was quite stable during the multiple reflows, and no visible IMC phase was confirmed in the interfacial microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号