首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
This study deals with the exergetic performance assessment of a combined heat and power (CHP) system installed in Eskisehir city of Turkey. Quantitative exergy balance for each component and the whole CHP system was considered, while exergy consumptions in the system were determined. The performance characteristics of this CHP system were evaluated using exergy analysis method. The exergetic efficiency of the CHP system was accounted for 38.16% with 49 880 kW as electrical products. The exergy consumption occurred in this system amounted to 80 833.67 kW. The ways of improving the exergy efficiency of this system were also analysed. As a result of these, a simple way of increasing the exergy efficiency of the available CHP system was suggested that the valves‐I–III and the MPSC could be replaced by a 3500 kW‐intermediate pressure steam turbine (IPST). If the IPST is installed to the CHP system (called the modified CHP (MCHP) system), the exergetic efficiency of the MCHP system is calculated to be 40.75% with 53 269.53 kW as electrical products. The exergy consumption is found to be 77 444.14 kW in the MCHP system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
This study deals with thermoeconomic analysis of household refrigerators for providing useful insights into the relations between thermodynamics and economics. In the analysis, the EXCEM method based on the quantities exergy, cost, energy and mass is applied to a household refrigerator using the refrigerant R134a. The performance evaluation of the refrigerator is conducted in terms of exergoeconomic aspects based on the various reference state temperatures ranging from 0 to 20°C. The exergy destructions in each of the components of the overall system are determined for average values of experimentally measured parameters. Exergy efficiencies of the system components are determined to assess their performances and to elucidate potentials for improvement. Thermodynamic loss rate‐to‐capital cost ratios for each components of the refrigerator are investigated. Correlations are developed to estimate exergy efficiencies and ratios of exergy loss rate‐to‐capital cost as a function of reference (dead) state temperature. The ratios of exergy loss rates to capital cost values are obtained to vary from 2.949 × 10?4 to 3.468 × 10?4 kW USThis study deals with thermoeconomic analysis of household refrigerators for providing useful insights into the relations between thermodynamics and economics. In the analysis, the EXCEM method based on the quantities exergy, cost, energy and mass is applied to a household refrigerator using the refrigerant R134a. The performance evaluation of the refrigerator is conducted in terms of exergoeconomic aspects based on the various reference state temperatures ranging from 0 to 20°C. The exergy destructions in each of the components of the overall system are determined for average values of experimentally measured parameters. Exergy efficiencies of the system components are determined to assess their performances and to elucidate potentials for improvement. Thermodynamic loss rate‐to‐capital cost ratios for each components of the refrigerator are investigated. Correlations are developed to estimate exergy efficiencies and ratios of exergy loss rate‐to‐capital cost as a function of reference (dead) state temperature. The ratios of exergy loss rates to capital cost values are obtained to vary from 2.949 × 10?4 to 3.468 × 10?4 kW US$?1. The exergy efficiency values are also found to range from 13.69 to 28.00% and 58.15 to 68.88% on the basis of net rational efficiency and product/fuel at the reference state temperatures considered, respectively. It is expected that the results obtained will be useful to those involved in the development of analysis and design methodologies that integrate thermodynamics and economics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of this paper is to perform the energy, exergy and exergoeconomic analysis for the Hamedan steam power plant. In the first part of the paper, the exergy destruction and exergy loss of each component of this power plant is estimated. Moreover, the effects of the load variations and ambient temperature are calculated in order to obtain a good insight into this analysis. The exergy efficiencies of the boiler, turbine, pump, heaters and the condenser are estimated at different ambient temperatures. The results show that energy losses have mainly occurred in the condenser where 306.9 MW is lost to the environment while only 67.63 MW has been lost from the boiler. Nevertheless, the irreversibility rate of the boiler is higher than the irreversibility rates of the other components. It is due to the fact that the combustion reaction and its high temperature are the most significant sources of exergy destruction in the boiler system, which can be reduced by preheating the combustion air and reducing the air–fuel ratio. When the ambient temperature is increased from 5 to 24°C, the irreversibility rate of the boiler, turbine, feed water heaters, pumps and the total irreversibility rate of the plant are increased. In addition, as the load varies from 125 to 250 MW (i.e. full load) the exergy efficiency of the boiler and turbine, condenser and heaters are increased due to the fact that the power plant is designed for the full load. In the second part of the paper, the exergoeconomic analysis is done for each component of the power plant in order to calculate the cost of exergy destruction. The results show that the boiler has the highest cost of exergy destruction. In addition, an optimization procedure is developed for that power plant. The results show that by considering the decision variables, the cost of exergy destruction and purchase can be decreased by almost 17.11%. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
C. Coskun  I. Dincer 《Energy》2011,36(11):6358-6366
In this study, a modified exergoeconomic model is proposed for geothermal power plants using exergy and cost accounting analyses, and a case study is in this regard presented for the Tuzla geothermal power plant system (Tuzla GPPS) in Turkey to illustrate an application of the currently modified exergoeconomic model. Tuzla GPPS has a total installed capacity of 7.5 MW and was recently put into operation. Electricity is generated using a binary cycle. In the analysis, the actual system data are used to assess the power plant system performance through both energy and exergy efficiencies, exergy losses and loss cost rates. Exergy efficiency values vary between 35% and 49% with an average exergy efficiency of 45.2%. The relations between the capital costs and the exergetic loss/destruction for the system components are studied. Six new exergetic cost parameters, e.g., the component annualized cost rate, exergy balance cost, overall unavoidable system exergy destruction/loss cost rate, overall unavoidable system exergy destruction/loss cost rate, overall unavoidable system exergy production cost rate and the overall unavoidable system exergy production cost rate are studied to provide a more comprehensive evaluation of the system.  相似文献   

5.
能量生产过程中总会有残留物质和能量排放到大气中 ,对环境产生影响。本文从能量系统的平衡出发 ,将系统对环境的排放从损失中分离出来 ,依据符号经济学的原理建立了包含环境影响在内的系统、成本和经济学成本分析模型 ,并以燃气轮机功热并供 (CGAM)系统为例推导出了矩阵求解方程 ,从而得出了能量系统的技术、经济和环境的经济综合分析模型  相似文献   

6.
In this study the specific exergy costing (SPECO) approach is employed on a four-step integrated thermochemical copper-chlorine (Cu Cl) cycle for hydrogen production for a second-law based assessment purposes. The Cu–Cl cycle is considered as one of the most environmentally benign and sustainable options of producing hydrogen and is thus investigated in this study due to its potential of ensuring zero greenhouse gas (GHG) emissions. Several conceptual Cu–Cl cycles have been exergoeconomically examined previously, however this study aims at investigating the four-step integrated Cu–Cl cycle developed at the Clean Energy Research Laboratory (CERL) at the Ontario Tech University thereby contributing to the thermo/exergoeconomic assessments of the thermochemical hydrogen production. In this study, the cycle is first thermodynamically modeled and simulated in a process simulation software (Aspen Plus) through exergy and energy approaches. The basic principles of the SPECO methodology are applied to the system and exergetic cost balances are performed for each cycle component. The exergetic costing of each cycle stream is then performed based on the cost balance equations. The purchased equipment cost and the hourly levelized capital cost rates for each cycle component is also obtained. The exergoeconomic factor, relative cost difference and exergy destruction cost rate for various cycle components are also evaluated. Moreover, the effect of several parameters on the total and hourly levelized capital cost rates is analyzed by performing a comprehensive sensitivity analysis. Based on the analysis, the exergy cost, the unit or specific exergy cost, and the unit costs of hydrogen are evaluated to be 6407.55 $/h, 0.042 $/MJ, and 4.94 $/kg respectively.  相似文献   

7.
In present work, the basic, dual-pressure and dual-fluid ORCs and Kalina cycle for power generation from the geothermal fluid reservoir are compared from energy, exergy and exergoeconomic viewpoints. To do so, first thermodynamic models are applied to the considered cycles; then by developing cost flow rate balance and auxiliary equations using SPECO method for all components, the cost flow rate and unit cost of exergy for each stream are calculated. The results show that the turbine in basic and Kalina cycles and low pressure turbine in dual-pressure and dual-fluid ORCs have the maximum value of sum of total cost rate associated with exergy destruction and total capital investment cost rate. Thus, more attention should be paid for these components from the exergoeconomic viewpoint. The cycles are optimized to obtain maximum produced electrical power in the cycles as well as minimum unit cost of produced power. The optimization results show that among the considered cycles, dual-pressure ORC has the maximum value of produced electrical power. This is 15.22%, 35.09% and 43.48% more than the corresponding values for the basic ORC, dual-fluid ORC and Kalina cycle, respectively in optimal condition. Also Kalina cycle has the minimum value of unit cost of power produced and its value in optimum state is 26.23%%, 52.09% and 66.74% less than the corresponding values for the basic ORC, dual-pressure ORC and dual-fluid ORC, respectively in optimal condition. Finally a parametric study is carried out to assess the effects on thermodynamic and exergoeconomic parameters of the considered cycles of operating pressures and ammonia mass concentration.  相似文献   

8.
The present study deals with a comprehensive thermodynamic modeling of a combined heat and power (CHP) system in a paper mill, which provides 50 MW of electric power and 100 ton h?1 saturated steam at 13 bars. This CHP plant is composed of air compressor, combustion chamber (CC), Air Preheater, Gas Turbine (GT) and a Heat Recovery Heat Exchanger. The design parameters of this cycle are compressor pressure ratio (rAC), compressor isentropic efficiency (ηAC), GT isentropic efficiency (ηGT), CC inlet temperature (T3), and turbine inlet temperature (T4). In the multi‐objective optimization three objective functions, including CHP exergy efficiency, total cost rate of the system products, and CO2 emission of the whole plant, are considered. The exergoenvironmental objective function is minimized whereas power plant exergy efficiency is maximized using a Genetic algorithm. To have a good insight into this study, a sensitivity analysis of the results to the interest rate as well as fuel cost is performed. The results show that at the lower exergetic efficiency, in which the weight of exergoenvironmental objective is higher, the sensitivity of the optimal solutions to the fuel cost is much higher than the location of the Pareto Frontier with the lower weight of exergoenvironmental objective. In addition, with increasing exergy efficiency, the purchase cost of equipment in the plant is increased as the cost rate of the plant increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, an exergoeconomic analysis of a 12 900 kW PEM electrolyser developed by WE‐NET at various operating temperatures and pressures is conducted. The analysis is performed at electrolyser's operating temperatures (T/T0) and pressures (P/P0) ranging from 1 to 1.4 and 1 to 10, respectively. A 40% improvement in the exergy cost of hydrogen could be achieved by operating the PEM electrolyser at a low temperature. However, a 2% decrease in the exergy cost could be achieved if the operating pressure is increased from 1 to 10 atm. Furthermore, a lower annual capital cost, O&M cost, electricity cost and higher year life could contribute greatly in reducing the exergy cost of hydrogen. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Exergoeconomic analysis has been used as a powerful tool to study and optimize various types of energy-related systems. This study deals with an exergoeconomic analysis of an FBCC steam power plant, located in the city of Izmir, Turkey using actual operational data. This plant consists of a ventilation fan (VF), an FBCC, a heat recovery steam generator (HRSG), a cyclone (CY), an economizer (ECO), an aspiration fan (AF), a pump (P) and a chimney (CH) as sub-systems. Quantitative exergy cost balance for each component and the whole FBCC plant is considered. The exergetic efficiency of this plant is calculated to be 20.28% at a steam mass flow rate of 1.861 kg/s. The highest exergy destruction rate occurs in the FBCC with an irreversibility rate of 89.2%, followed by HRSG, VF, ECO, AF, CH and P. The unit exergy cost and exergy cost of steam produced by the FBCC steam plant amount to 17.88 US$/GJ and 93.57 US$/h, respectively. This study demonstrates that exergoeconomic analysis can provide extra information than exergy analysis, while the results obtained from this analysis present cost-based information.  相似文献   

11.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

12.
A novel solar based combined system is proposed to produce hydrogen and cooling. The presented cogeneration system is analyzed in detail from the viewpoints of exergy and exergoeconomic (exergy based economic analysis). The proposed system includes a concentrated PVT (CPVT), a single effect LiBr-H2O absorption chiller and proton exchange membrane electrolyzer (PEM). Produced electrical power is consumed in the PEM electrolyzer to split water into oxygen and pure hydrogen while heat removal from the CPVT is done by the absorption chiller to guarantee its better performance. Second law analysis showed that, among the three different parts of the system, the most part of exergy destruction refers to the CPVT followed by absorption chiller unit and PEM electrolyzer. Also, it is observed that, among the absorption units' components, the highest percent of exergy destruction belongs to the generator which absorbs the heat from the CPVT. Moreover, exergoeconomic analysis revealed that the most important unit from the viewpoint of economic is the CPVT with the capital investment cost of 0.08946 $/h and an exergoeconomic factor of 28.82%.  相似文献   

13.
Inlet cooling is effective for mitigating the decrease in gas turbine performance during hot and humid summer periods when electrical power demands peak, and steam injection, using steam raised from the turbine exhaust gases in a heat recovery steam generator, is an effective technique for utilizing the hot turbine exhaust gases. Biomass gasification can be integrated with a gas turbine cycle to provide efficient, clean power generation. In the present paper, a gas turbine cycle with fog cooling and steam injection, and integrated with biomass gasification, is proposed and analyzed with energy, exergy and exergoeconomic analyses. The thermodynamic analyses show that increasing the compressor pressure ratio and the gas turbine inlet temperature raises the energy and exergy efficiencies. On the component level, the gas turbine is determined to have the highest exergy efficiency and the combustor the lowest. The exergoeconomic analysis reveals that the proposed cycle has a lower total unit product cost than a similar plant fired by natural gas. However, the relative cost difference and exergoeconomic factor is higher for the proposed cycle than the natural gas fired plant, indicating that the proposed cycle is more costly for producing electricity despite its lower product cost and environmental impact.  相似文献   

14.
This paper is part 1 of the study on the energy, exergy, and exergoeconomic analysis of diesel engine powered cogeneration (DEPC). Part 1 presents the formulation developed for such a comprehensive analysis while part 2 is an application of the developed formulation that considers an actual cogeneration power plant. Compression ignition engine powered cogeneration application is among the most efficient simple cycle power generation plants where the efficiencies are around 50%. The DEPC is mostly preferred in regions where natural gas is not available or not preferable because of high unit prices. In this paper, a DEPC plant is considered with all associated components. Mass, energy, and exergy balances are applied to each system component and subsystem. Exergy balance formulations are aimed to yield exergy destructions. Various efficiencies based on both energy and exergy methods and the performance assessment parameters are defined for both the system components and the entire cogeneration plant. The formulations for the cost of products, and cost formation and allocation within the system are developed based on both energy and exergy (i.e., exergoeconomic analysis). The cost analyses formulated here have significant importance to obtain the optimum marketing price of the product of thermal systems to maximize the benefit and/or minimize the cost.  相似文献   

15.
基于结构理论的350MW超临界直接空冷机组的热经济学分析   总被引:1,自引:1,他引:0  
应用结构理论建立了某超临界直接空冷机组的热经济学模型,通过量化各组件间的生产交互关系、计算各组件的单位成本,分析了系统生产成本的形成过程.简化合并直接空冷机组的凝汽组件,并近似计算其耗电量.根据该机组THA工况的计算结果,分析了影响组件产品单位成本的因素.结果表明:当消耗同一种燃料时,组件效率越低,其产品单位成本就越高;当消耗不同燃料时,要综合考虑燃料成本和效率对产品单位成本的影响,并指出7号低压加热器、给水泵、小汽轮机以及凝结水泵等组件的单位成本较大;直接空冷机组凝汽器的单位成本显著高于湿冷机组,应用结构理论能够准确评价空冷机组的生产性能.  相似文献   

16.
This paper presents an assessment of a combined cooling, heating and power (CCHP) and multi-effect desalination (MED) system based on SOFC/MGT by conventional and advanced exergoeconomic analyses. The conventional exergy analysis can reveal the sources of irreversibility in the system. The largest exergy destruction occurs in after burner followed by SOFC and MED, accounting for 20.079%, 12.986%, 12.907%, respectively. In the advanced analysis, the exergy destruction, exergy destruction cost and investment cost are split into avoidable/unavoidable and endogenous/exogenous parts to investigate the real potentials of exergy and economic performances. The advanced analysis results indicate that the major exergy destructions of most components are endogenous parts with inverter, MGT and air compressor owning the most potentials to reduce exergy destructions. The modified exergy efficiency of each component in the advanced analysis is higher than the conventional one. Finally, three possible strategies are suggested to reduce the avoidable exergy destruction cost rates.  相似文献   

17.
李永华  刘伟庭 《动力工程》2012,32(3):242-248
基于成本理论建立了热力系统局部成本分析通用模型及火电机组热力系统成本分布的通用矩阵方程,并对某600MW机组的热力系统进行实例计算与分析,得到了额定工况下独立流的单位成本.结果表明:该方程构造规范,适用于各种不同的热力系统,可以用于分析热力系统中存在的共性规律;对于具体的热力系统,通过将一些必要的矩阵元素代入方程中,可得到独立流的单位成本和单位成本的分布规律,为机组的节能降耗提供指导;如果对方程进行进一步的微分运算分析,还可求出一些因素变化对单位成本影响的敏感度.  相似文献   

18.
何晓红  蔡睿贤  苟晨华 《节能》2008,27(3):16-18,37
简介内燃机冷热电联产系统的发展现状,总结了发电用内燃机在设计点工况下主要参数的现有分布范围:排气温度约为450~600℃,排气流量基本上与额定功率呈线性关系,发电效率一般在33%~45%。对联产系统不同形式的能量输出、联产系统经济效率等进行分析研究,表明联产系统回收的能量主要来自排气和冷却水,排气回收能量一般高于冷却水回收能量。与热电联产系统相比,由于制冷比供热困难,冷热电联产系统的经济效率较高。  相似文献   

19.
A comprehensive exergy, exergoeconomic and environmental impact analysis and optimization is reported of several combined cycle power plants (CCPPs). In the first part, thermodynamic analyses based on energy and exergy of the CCPPs are performed, and the effect of supplementary firing on the natural gas-fired CCPP is investigated. The latter step includes the effect of supplementary firing on the performance of bottoming cycle and CO2 emissions, and utilizes the first and second laws of thermodynamics. In the second part, a multi-objective optimization is performed to determine the “best” design parameters, accounting for exergetic, economic and environmental factors. The optimization considers three objective functions: CCPP exergy efficiency, total cost rate of the system products and CO2 emissions of the overall plant. The environmental impact in terms of CO2 emissions is integrated with the exergoeconomic objective function as a new objective function. The results of both exergy and exergoeconomic analyses show that the largest exergy destructions occur in the CCPP combustion chamber, and that increasing the gas turbine inlet temperature decreases the CCPP cost of exergy destruction. The optimization results demonstrates that CO2 emissions are reduced by selecting the best components and using a low fuel injection rate into the combustion chamber.  相似文献   

20.
火电机组回热系统(火用)损分布的通用矩阵方程   总被引:4,自引:1,他引:3  
根据平衡方程,首次导出了火电机组回热系统损分布的通用矩阵方程。利用这一方程可方便地得出不同机组回热系统的损分布规律,同时这一方程也为建立回热系统乃至整个机组与损分布通用矩阵方程相关的通用的分析模型、经济学分析模型、经济学优化模型和经济学故障诊断模型奠定了基础。利用这一方程还可以方便地开发出实时监测回热系统损分布的计算机程序,为降低机组能耗提供一个实用化的分析工具。图3表1参6  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号