首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用OM、SEM、TEM和电子万能试验机研究了Mg_(94)Y_4Zn_1Ni_1(at%)合金在铸态、退火、挤压和时效态的显微组织与力学性能。结果表明:铸态合金组织由胞状α-Mg相、网状18R LPSO相和块状Mg_(24)(Y,Zn,Ni)_5相组成。退火后,合金中未析出14H LPSO相。经挤压变形,18R LPSO相转变为长条状并沿挤压方向排列,挤压态合金的抗拉强度达到417 MPa,显著高于铸态和退火态合金。经过T5和T6时效处理,在合金的基体中析出大量细小的共格β'沉淀相,合金得到进一步强化。T5态和T6态合金的抗拉强度分别为434和432 MPa,屈服强度均高于300 MPa。  相似文献   

2.
研究了Mg-2Y-xZn(x=1,2,3 at%)合金在铸态、退火态和挤压态的显微组织与力学性能。结果表明:随着合金中Zn含量的增加,合金显微组织中第二相依次为18R-LPSO相、(LPSO+W)混合物和W相。在退火过程中,层片状的14H-LPSO结构析出并沿块状18R-LPSO结构向基体中生长,W相由铸态时弯曲的条纹状转变为颗粒状。经过挤压变形后,LPSO结构和W相均沿挤压方向排列,合金性能得到大幅度提高,其中Mg-2Y-1Zn合金具有最好的室温力学性能,抗拉强度为320 MPa,延伸率达到11.2%。  相似文献   

3.
研究了Mg-2Y-xZn(x=1,2,3 at%)合金在铸态、退火态和挤压态的显微组织与力学性能。结果表明:随着合金中Zn含量的增加,合金显微组织中第二相依次为18R-LPSO相、(LPSO+W)混合物和W相。在退火过程中,层片状的14H-LPSO结构析出并沿块状18R-LPSO结构向基体中生长,W相由铸态时弯曲的条纹状转变为颗粒状。经过挤压变形后,LPSO结构和W相均沿挤压方向排列,合金性能得到大幅度提高,其中Mg-2Y-1Zn合金具有最好的室温力学性能,抗拉强度为320 MPa,延伸率达到11.2%。  相似文献   

4.
采用光学显微镜、X射线衍射仪(XRD)、扫描电镜(SEM)和力学试验等研究了Mg-10Er-2Zn-0.6Zr合金的组织和力学性能。结果表明,铸态Mg-10Er-2Zn-0.6Zr合金主要由树枝状α-Mg基体以及分布于枝晶间的长周期结构相和Mg_3(Er,Zn)相组成;合金经过500℃×20h固溶后,铸态合金中LPSO相和Mg_3(Er,Zn)相消失,而在晶界处生成WMg_3Er_2Zn_3相;随后炉冷至400℃,α-Mg晶内析出呈平行排列且贯穿晶粒的条纹状LPSO相结构。拉伸条件下,固溶态合金具有最佳的力学性能,其屈服强度、抗拉强度和伸长率分别为117 MPa、227 MPa、17.9%。与拉伸性能相比,压缩条件下合金表现出更优的力学性能。  相似文献   

5.
采用X射线衍射仪、光学显微镜以及扫描电镜对铸态Mg-11Gd-3Y-xZn-0.5Zr合金显微组织进行观察分析,用拉伸试验机及布氏硬度计对合金力学性能进行测试,结果表明:铸态Mg-11Gd-3Y-0.5Zr合金的组织主要由α-Mg基体、Mg_5(Gd,Y)相和Mg_(24)(Gd,Y)_5相组成,晶粒较为粗大;在加入Zn元素后,合金由α-Mg基体、Mg_5(Gd,Y,Zn)相以及Mg_(12)Zn(Gd,Y)相组成;随着Zn元素加入量的增加,合金的晶粒先细化再粗化,抗拉强度、伸长率和布氏硬度值先升高后降低,当Zn含量为1.1%时,合金的抗拉强度、伸长率和布氏硬度达到最高值,分别为216.9 MPa、4.74%和84.37 HBW,合金的主要强化相为Mg_(12)Zn(Gd,Y)相,强化机制主要为细晶强化。  相似文献   

6.
采用光学显微镜、扫描电镜、X射线衍射仪(XRD)、透射电镜、纳米压痕测试仪和电子万能试验机等研究了B4C对Mg94Zn2.5Y2.5Mn1合金组织和性能的影响.结果 表明:铸态Mg94Zn2.5Y2.5Mn1合金主要由α-Mg、鱼骨状W相和块状18R LPSO相组成;适量B4C的加入可以有效地细化合金的晶粒,促进LPSO相的形成,抑制W相的产生;当加入0.5 at%B4C时,合金的显微组织和力学性能为最优,平均晶胞尺寸为20.7 pm,LPSO相的体积分数为22.5%,抗拉强度为256 MPa,伸长率为8.6%.  相似文献   

7.
研究了固溶处理工艺对低稀土含量的Mg-4Gd-1Y-1Zn-0.5Ca-1Zr合金显微组织和力学性能的影响。结果表明,合金的铸态组织为α-Mg基体、共晶相和处于α-Mg基体边缘的长周期堆垛有序(LPSO)结构。经480℃固溶处理后,合金中共晶相的体积分数减少,出现富Zr析出相,LPSO结构完全消失。经520℃固溶处理后,合金组织由α-Mg基体和大量富Zr析出相组成。随着固溶温度的升高,合金的强度和硬度先降低后升高,520℃固溶处理的合金的力学性能与铸态性能相当。LPSO结构、固溶、析出相和晶粒尺寸均影响合金的力学性能。  相似文献   

8.
研究添加不同含量Zn对铸态Mg-2Dy(摩尔分数,%)合金显微组织、时效行为和力学性能的影响。结果表明:Zn含量为0.5%和1%(摩尔分数)时,铸态合金中分别析出片层状具有18R类型长周期有序(LPSO)结构的Mg12Zn Dy相和粗大的Mg3Zn3Dy2相;同时,Zn的添加细化了合金的晶粒;固溶处理后,LPSO相由18R类型转变成沿晶内分布的细条状的14H类型,新的(Mg,Zn)x Dy相形成,且Mg3Zn3Dy2相的体积分数减小;添加0.5%Zn有效地增强了合金的时效硬化行为,提高了合金的室温和200℃的拉伸强度。  相似文献   

9.
采用XRD、SEM和拉伸力学性能测试方法,分析了铸态和固溶时效态Mg-11Gd-3Y合金的显微组织和力学性能。结果表明,热处理没有改变Mg-11Gd-3Y合金相的组成,合金铸态和固溶时效态组织均由α-Mg基体、Mg_5Gd和Mg_(24)Y_5相组成。固溶时效态合金的强化机制主要为固溶强化和时效强化,其最大抗拉强度为230 MPa,比铸态合金提高了12%。  相似文献   

10.
对Mg-10.5Gd-1.0Y-1.0Zn-0.5Zr镁合金进行480℃固溶保温16 h的热处理试验,研究了固溶处理对铸态合金显微组织和力学性能的影响。结果显示:试验合金的铸态组织主要是由α-Mg、共晶组织组成的第二相Mg_5Gd、Mg_(24)Y_5和少量的片层状的LPSO结构相(主要是Mg_(12)YZn相)组成。试验合金经480℃保温16 h固溶处理后,合金的第二相的类型没有发生改变,但是Mg_5Gd和Mg_(24)Y_5的数量下降了,而LPSO结构相(主要是Mg_(12)YZn相)的数量有所上升。试验合金经过480℃保温16 h的固溶处理后,合金的强度上升了,但是塑性有所下降,因此,合金的固溶处理可以改善其力学性能。  相似文献   

11.
研究了在773 K、48 h条件下热处理对Mg_(94)Zn_2Y_4合金的微观组织与力学性能的影响。结果表明,块形和板条结构的18R长周期堆垛结构相可直接从熔体凝固过程中形成。热处理后,绝大多数的块形和板条结构相转变为细片状或针状的14H相。在热处理过程中,有相当体积分数的LPSO(长周期堆垛结构)相由18R转变为14H。结果表明,经过热处理,块形和板条结构相与针状相可以在α-Mg基体中共存,并作为影响因素,使合金晶粒得到细化,晶粒尺寸为14~24μm(平均晶粒尺寸为19μm),使极限抗拉强度、屈服强度以及伸长率分别由铸态时的182 MPa、135 MPa和10.2%提高至245 MPa、157 MPa和13.8%。  相似文献   

12.
采用室温拉伸试验,结合显微组织观察、晶粒尺寸测定和晶格常数分析等研究了具有不同稀土元素Y含量的铸态Mg-Y合金的力学性能和强化机制。结果表明,随着Y的质量百分含量从5%增加到12%,铸态Mg-Y合金的抗拉强度先增加后降低且在Y含量为10%时取得最大值,同时合金的伸长率逐渐降低;合金的显微组织由α-Mg基体和Mg_(24)Y_5相组成,随着Y含量的增加,合金的晶粒尺寸减小,高熔点Mg_(24)Y_5相增多;合金的强化机制可主要归结为细晶强化、固溶强化和第二相(Mg_(24)Y_5)强化。  相似文献   

13.
通过铸锭冶金工艺,制备了含微量Pr的Al-8.2Zn-2.1Mg-1.5Cu合金.采用金相观察、力学性能测试及透射电镜分析,研究了质量分数为0.1%的Pr对基体合金的铸态及时效态的显微组织和力学性能的影响.结果表明,添加质量分数为0.1%的Pr能细化铸态合金的晶粒,抑制挤压态合金的再结晶,最终提高了基体合金的强度和断裂韧度;其抗拉强度达到713 MPa,断裂韧度KIC(S-L)达到26.5 MPa·m1/2.  相似文献   

14.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)及室温拉伸等手段,研究元素Si对铸造Mg-Gd-Y-Zr合金组织与力学性能的影响。结果表明:Mg-10Gd-1Y-xSi-0.5Zr(x=0,0.5,1,1.5,2)合金的铸态和固溶时效态显微组织均由α-Mg、Mg_5Gd和Mg_(24)Y_5相组成,Si的加入产生新相Mg_2Si。随着Si含量的增加,铸态合金中枝晶状组织明显减少并逐渐消失,晶粒细化,合金的析出相增多。时效态合金中当Si含量增加至1 mass%时,合金组织化学成分最均匀,析出相呈颗粒状和棒条状分布于基体中。在室温下,铸态和时效态合金的抗拉强度,均随着Si含量的增加先升后降,Mg-10Gd-1Y-1Si-0.5Zr合金的抗拉强度最高,时效态合金强度达到最高为256.2 MPa,比Mg-10Gd-1Y-0.5Zr合金高出将近40 MPa。合金的伸长率随Si含量的增加而减小,其断裂方式都属脆性断裂。  相似文献   

15.
通过OM、SEM、XRD和力学性能测试等手段研究了半连续铸造Mg-6Zn-3Sn-0.5Mn(ZTM630)镁合金铸锭的组织和力学性能。结果表明,铸态显微组织主要由α-Mg相、Mg_2Sn相、Mg_7Zn_3相组成;经过420℃×8 h固溶处理,Mg_7Zn_3相和绝大部分的Mg_2Sn相全部溶解到基体中,剩余少量Mg_2Sn相呈颗粒状分布在晶界或晶粒内部;固溶处理后实验合金的抗拉强度、屈服强度和伸长率均有所提高。  相似文献   

16.
通过改变挤压温度以获得含有不同堆垛结构长周期相(LPSO)的Mg-2.0Zn-0.3Zr-5.8Y合金,研究LPSO相堆垛结构转变对挤压态合金组织性能的影响规律及其作用机制。结果表明:挤压温度为390℃,合金中有18R和14H 2种堆垛结构的LPSO相,其平均晶粒尺寸为(9.5±3.0)μm,合金的抗拉强度达到280 MPa,延伸率为18.7%;当变形温度达到420℃,合金中18R LPSO相全部转变为14H结构,平均晶粒尺寸大幅细化至(3.1±1.1)μm,合金的抗拉强度和延伸率均得到明显提高,分别达到330 MPa和20.8%;随着挤压温度的进一步提高,合金的平均晶粒尺寸逐渐变大,强度和延伸率开始逐渐降低。由于LPSO相堆垛结构转变和晶粒尺寸变化引起基面织构和柱面织构的强度发生变化,LPSO相形态改变以及晶粒细化是Mg-2.0Zn-0.3Zr-5.8Y挤压态合金室温力学性能变化的主要因素。  相似文献   

17.
以气体保护法制备的Mg-13Zn-0.5Nd-xCa(x=3,4,5,6)合金为研究对象,通过光学金相显微镜、扫描电镜观察、能谱分析、XRD物相分析以及硬度和常温力学性能测试,研究了因含Ca量的不同对该类型合金显微组织和力学性能的影响。合金铸态组织主要由α-Mg基体相、α-Mg+Mg_6Zn_3Ca_2共晶相以及第二相Mg_2Ca和Mg_6Zn_3Ca_2组成,随着含Ca量的增加,晶粒明显细化。经390℃,8 h固溶处理和240℃,8 h人工时效处理后,消除了共晶组织连续网状分布状态,使更多的第二相析出且弥散分布,提高了合金的常温力学性能。Ca加入量为4%时,合金在T6处理后表现出最好的综合力学性能,峰时效态合金的屈服强度和抗拉强度达到108和175 MPa,伸长率为6.10%,该合金优异的力学性能主要是第二相强化和细晶强化的双重效果。  相似文献   

18.
采用光学显微镜、扫描电镜、X射线衍射仪和万能力学试验机等研究了固溶和时效热处理对Mg-12Gd-Y-0.5Zr合金显微组织和力学性能的影响。结果表明:Mg-12Gd-Y-0.5Zr合金铸态组织主要由α-Mg基体和沿晶界呈不连续网状分布的Mg_5(Gd,Y)共晶相组成,经固溶时效处理后,合金组织主要由分布于晶粒内部和晶界处的颗粒状Mg_5Gd、Mg_(24)Y_5相组成,有效地提高了合金强度。在不同状态下合金的室温抗拉强度为:铸态191.5 MPa、固溶态213.6 MPa以及时效态269.7 MPa。经固溶时效处理后,塑性有明显的改善。  相似文献   

19.
微量Sc对AA7085铝合金组织与性能的影响   总被引:3,自引:2,他引:1  
通过铸锭冶金工艺,制备含微量Sc的AA7085铝合金。采用金相观察、力学性能测试、扫描电镜及透射电镜分析,研究添加0.3%Sc对基体合金的铸态及锻造态的显微组织和力学性能的影响。结果表明,添加0.3%Sc能细化铸态合金的晶粒,抑制锻造态合金的再结晶,最终提高基体合金的强度和断裂韧性;含0.3%Sc的合金抗拉强度达到562MPa,断裂韧性KIC(S-L)达到34MPa·m1/2。含Sc的AA7085合金的强化机制主要是Al3(Sc,Zr)相引起的细晶强化、亚结构强化和沉淀强化。  相似文献   

20.
通过光学显微镜、扫描电镜研究了含长周期相(LPSO)铸态Mg-Zn-Y合金的显微组织。并对铸态Mg-Zn-Y合金进行了电磁屏蔽性能研究。结果表明:该合金的显微组织主要由树枝晶状α-Mg相和晶界处的LPSO相组成,且随着Zn、Y元素含量的增加,该合金的晶粒尺寸明显减小,LPSO相体积分数增加。随着Zn、Y元素含量不断增加,合金的电导率和电磁屏蔽性下降。此外合金的电磁屏蔽性能随频率的提高而下降。Mg_(97)Zn_1Y_2合金的电导率和电磁屏蔽性能最优,分别为18.5 MS/m和f=100 Hz,SE=96 d B;f=1500 Hz,SE=84 d B。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号