首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Regiospecific distributions of fatty acids of triacylglycerols (TAG) and phospholipids (PL) separated from broad beans (Vicia faba) of four cultivars (Minpo, Sanuki, Nintoku and Sanren) were investigated. The major lipid components were PL (47.5–50.5 wt‐%) and TAG (47.7–50.1 wt‐%), while steryl esters, hydrocarbons, free fatty acids, diacylglycerols and monoacylglycerols were present in minor proportions (1.6–2.4 wt‐%). The PL components isolated from the four cultivars were phosphatidylcholine (56.4–58.4 wt‐%), phosphatidylethanolamine (20.3–21.7 wt‐%) and phosphatidylinositol (16.6–18.6 wt‐%). Phosphatidylinositol was unique in that it had the highest saturated fatty acid content among these PL. The principal characteristics of the fatty acid distribution in the TAG and PL were evident in the beans: Unsaturated fatty acids were predominantly concentrated in the sn‐2 position while saturated fatty acids primarily occupied the sn‐1 or sn‐3 position in these lipids. The lipid components and fatty acid distributions were almost the same in the four cultivars and were not influenced by genetic variability and planting location. These results could be useful information to both consumers and producers for the manufacture of traditional broad bean foods in Japan.  相似文献   

2.
Seed oils from five legume cultivars of Phaseolus vulgaris, grown in Japan, were extracted and classified by thin‐layer chromatography (TLC) into seven fractions: hydrocarbons (HC; 0.7–1.4 wt‐%), steryl esters (SE; 1.7–3.3 wt‐%), triacylglycerols (TAG; 33.8–45.9 wt‐%), free fatty acids (FFA; 0.6–1.5 wt‐%), sn‐1,3‐diacylglycerols (1,3‐DAG; 0.3–1.0 wt‐%), sn‐1,2‐diacylglycerols (1,2‐DAG; 0.4–1.2 wt‐%) and phospholipids (PL; 49.4–58.8 wt‐%). Fatty acids derivatized as methyl esters were analyzed by gas chromatography (GC) and a flame ionization detector. Molecular species and the fatty acid distribution of TAG isolated from the total lipids in the beans were analyzed by a combination of argentation‐TLC and GC. A modified argentation‐TLC procedure, developed to optimize the separation of the complex mixture of total TAG, provided 18 different groups of TAG, based on both the degree of unsaturation and the total length of the three acyl chains of fatty acid groups. SDT (3.2–4.2 wt‐%), M2T (3.8–5.0 wt‐%), D3 (4.8–5.9 wt‐%), MDT (8.0–13.9 wt‐%), D2T (12.5–15.8 wt‐%), MT2 (19.4–22.7 wt‐%), DT2 (17.8–23.5 wt‐%) and T3 (9.2–13.0 wt‐%) were the main TAG components. The dominant fatty acids of TAG were α‐linolenic (48.5–57.8 wt‐%) and linoleic (16.7–25.8 wt‐%) acids, with appreciable amounts of palmitic (8.3–13.2 wt‐%) and oleic (7.8–13.8 wt‐%) acids. The high content of α‐linolenic acid in the cultivars of P. vulgaris could very likely play a beneficial role in reducing the risk of coronary heart disease among the large populations consuming them in Japan.  相似文献   

3.
Seed oils from four legume cultivars of Pisum sativum, grown in Japan, were extracted and classified by thin‐layer chromatography (TLC) into seven fractions: hydrocarbons (HC; 0.5–0.9 wt‐%), steryl esters (SE; 0.8–2.4 wt‐%), triacylglycerols (TAG; 31.2–40.3 wt‐%), free fatty acids (FFA; 1.3–2.7 wt‐%), 1,3‐diacylglycerols (1,3‐DAG; 1.0–1.8 wt‐%), 1,2‐diacylglycerols (1,2‐DAG; 1.0–2.2 wt‐%) and phospholipids (PL; 52.2–61.3 wt‐%). All lipid samples had high amounts of total unsaturated fatty acids, representing 75.0–84.3 wt‐% for TAG and PL. Molecular species and fatty acid distributions of TAG, isolated from the total lipids in the peas, were analyzed by a combination of argentation‐TLC and GC. Eighteen different molecular species were detected. With a few exceptions, the main TAG components were SMD (7.5–10.3 wt‐%), M2D (8.0–8.9 wt‐%), SD2 (12.0–18.3 wt‐%), SMT (9.8–11.0 wt‐%), MD2 (12.0–20.3 wt‐%), SDT (9.7–10.8 wt‐%), M2T (2.5–7.3 wt‐%) and D3 (14.5–15.2 wt‐%) (where S denotes a saturated fatty acid, M denotes a monoene, D denotes a diene, and T denotes a triene). It seems that the four cultivars were highly related to each other based on the fatty acid composition of the TAG as well as the distribution profiles in the different TAG molecular species. In general, these results suggest that there are no essential differences (p >0.05) in the oil components among the four cultivars.  相似文献   

4.
Extracted lipids obtained from Jack beans (white and red) were fractionated by TLC into nine subfractions. The major components were TAGs (TAG: 43.8–45.7 wt%) and phospholipids (PL: 46.7–47.0 wt%), while other components were also present in minor proportions (0.3–2.7 wt%). The principal fatty acids (FA) are generally palmitic (18.8–28.8%), stearic (0.7–6.8%), oleic (42.0–51.8%), linoleic (16.2–22.8%), and α‐linolenic (3.0–8.2%) acids, the distribution of which differs according to these lipid classes. There were no significant differences (p>0.05) in the positional distribution of FA in the TAG; unsaturated FA (97.5%) were predominantly concentrated in the sn‐2 position while saturated FA (33.3%) primarily occupied the sn‐1 position or sn‐3 position. However, significant differences (p<0.05) in FA distribution existed when the individual PL were compared between the white and red beans. Based on the FA composition of these lipids, it seems that the two cultivars of Jack beans are very similar to each other with a few exceptions. The results could be useful to both producers and consumers for our daily diet to improve value of the Japanese diet. Practical applications : The lipid composition suggests that these beans could be a good source of nutraceuticals with providing heath benefits. The white and red beans may be well incorporated into our daily Japanese diets to improve nutritional value. The data obtained in this study provide valuable information for manufacturing functional drinks such as Jack bean tea in Japan.  相似文献   

5.
The lipases Novozym 435, Lipozyme TL IM and Lipozyme RM IM were employed in the production of lower acylglycerols (LG), i.e. mono‐ (MAG) and diacylglycerols (DAG), rich in unsaturated fatty acids from sesame oil in batch reactors. The effect of the molar ratio of ethanol to fatty acids on the reusability of these immobilized lipases was studied in detail. The effects of pretreatment on lipase activity for ethanolysis were investigated. Glycerol had a strong product inhibition effect on the ethanolysis reaction, and a relatively large excess of ethanol was necessary to remove the glycerol adsorbed on these biocatalysts. The enzymatic activity was drastically reduced by addition of water to the reaction medium. The presence of organic solvents (hexane and acetone) did not favor the production of LG. For the Novozym 435‐catalyzed reaction, optimum conditions were a molar ratio of ethanol to fatty acid residues of 5 : 1, 15 wt‐% lipase and 50 °C. For Lipozyme TL IM, the optimum conditions were a molar ratio of ethanol to fatty acid residues of 5 : 1, 20 wt‐% biocatalyst, and 30 °C. Novozym 435 and Lipozyme TL IM produced LG with molar ratios of unsaturated to saturated fatty acids of 20.4 in 1 h and 25.3 in 5 h, respectively. In the original oil, this ratio was 5. For trials conducted under optimum conditions, the products from the Novozym 435 trials contained 21.8 wt‐% triacylglycerols (TAG), 24 wt‐% DAG and 54.2 wt‐% MAG. The products of the Lipozyme TL IM trials consisted of 12.9 wt‐% DAG and 87.1 wt‐% MAG. No TAG species were detected.  相似文献   

6.
Oils from the seeds of caraway (Carum carvi), carrot (Daucus carota), celery (Apium graveolens) and parsley (Petroselinum crispum), all from the Apiaceae family, were analyzed by gas chromatography for their triacylglycerol (TAG) composition and fatty acid (FA) distribution between the sn‐1(3) and sn‐2 positions of TAG. Twenty‐two TAG species were quantified. Glyceryl tripetroselinate was the major TAG species in seed oils of carrot, celery and parsley, with levels ranging from 38.7 to 55.3%. In caraway seed oil, dipetroselinoyllinoleoylglycerol was the major TAG species at 21.2%, while the glyceryl tripetroselinate content was 11.4%. Other TAG species were linoleoyloleoylpetroselinoylglycerol and dipetroselinoyloleoylglycerol. Predominantly, TAG were triunsaturated (72.2–84.0%) with diunsaturates at 14.4–25.9%, and small amounts of monounsaturated TAG. Results for regiospecific analysis showed a non‐random FA distribution in Apiaceae for palmitic, petroselinic, linoleic and oleic acids. Petroselinic acid was predominantly located at the sn‐1(3) position in carrot, celery and parsley seed oils, while it was mainly at the sn‐2 position in caraway seed oil. The distribution of linoleic acid was opposite to that of petroselinic acid. Oleic acid was mostly located at the sn‐2 position, except for caraway, where it was evenly distributed between the sn‐1(3) and sn‐2 positions. Both the saturated FA, palmitic and stearic acid, were located mainly at the sn‐1(3) position. The presence of a high level of tripetroselinin in parsley seed oil (55.3%) makes it a potential source for the production of petroselinic acid.  相似文献   

7.
The positional distribution of fatty acids (FA) of triacylglycerols (TAG) and major phospholipids (PL) prepared from four cultivars of peas (Pisum sativum L.) were investigated as well as their tocopherol contents. The lipids extracted from these peas were separated by thin-layer chromatography (TLC) into seven fractions. The major lipid components were PL (52.2–61.3%) and TAG (31.2–40.3%), while the other components were also present in minor proportions (5.6–9.2%). γ-Tocopherol was present in the highest concentration, and α- and δ-tocopherols were very small amounts. The main PL components isolated from the four cultivars were phosphatidylcholine (42.3–49.2%), followed by phosphatidylinositol (23.3–25.2%) and then phosphatidylethanolamine (17.7–20.5%). Small but significant differences (P < 0.05) in FA distribution existed when different pea cultivars were determined. However, the principal characteristics of the FA distribution in the TAG and the three PL were evident among the four cultivars; unsaturated FA were predominantly located in the sn-2 position, and saturated FA primary occupied the sn-1 or sn-3 position in the oils of the peas. These results suggest that the regional distribution of tocopherols and fatty acids in peas is not dependent on the climatic conditions and the soil characteristics of the cultivation areas during the growing season.  相似文献   

8.
The fatty acid distribution of triacylglycerols (TAG) and major phospholipids (PL) within soybean seeds (Glycine max L.) was investigated in relation to their tocopherol contents. The lipids extracted from four cultivars were separated by thin‐layer chromatography into seven fractions. Tocopherols were predominantly detected in the axis, followed by cotyledons and seed coat. The major lipid components were TAG and PL, while hydrocarbons, steryl esters, free fatty acids and diacylglycerols (sn‐1,3 and sn‐1,2) were also present in minor proportions. With a few exceptions, the dominant PL components were phosphatidylcholine, followed by phosphatidylethanolamine or phosphatidylinositiol. Significant differences (p <0.05) in fatty acid distribution existed when different soybean cultivars were examined. However, the principal characteristics of the fatty acid distribution in the TAG were evident among four cultivars; unsaturated fatty acids were predominantly concentrated in the sn‐2 position, and saturated fatty acids primarily occupied the sn‐1 or sn‐3 position in the oils of the soybeans.  相似文献   

9.
Seeds from different collections of cultivatedSesamum indicum Linn. and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum and Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil content and fatty acid composition of the total lipids. The wild seeds contained less oil (ca. 30%) than the cultivated seeds (ca. 50%). Lipids from all four species were comparable in their total fatty acid composition, with palmitic (8.2–12.7%), stearic (5.6–9.1%), oleic (33.4–46.9%) and linoleic acid (33.2–48.4%) as the major acids. The total lipids from selected samples were fractionated by thin-layer chromatography into five fractions: triacylglycerols (TAG; 80.3–88.9%), diacylglycerols (DAG; 6.5–10.4%), free fatty acids (FFA; 1.2–5.1%), polar lipids (PL; 2.3–3.5%) and steryl esters (SE; 0.3–0.6%). Compared to the TAG, the four other fractions (viz, DAG, FFA, PL and SE) were generally characterized by higher percentages of saturated acids, notably palmitic and stearic acids, and lower percentages of linoleic and oleic acids in all species. Slightly higher percentages of long-chain fatty acids (20∶0, 20∶1, 22∶0 and 24∶0) were observed for lipid classes other than TAG in all four species. Based on the fatty acid composition of the total lipids and of the different acyl lipid classes, it seems thatS. radiatum andS. angustifolium are more related to each other than they are to the other two species.  相似文献   

10.
Changes in composition were examined in oils extracted from genetically modified sunflower and soybean seeds. Improvements were made to the analytical methods to accomplish these analyses successfully. Triacylglycerols (TAG) were separated on two 300 mm × 3.9 mm 4μ Novapak C18 high-performance liquid chromatography (HPLC) columns and detected with a Varex MKIII evaporative light-scattering detector. Peaks were identified by coelution with known standards or by determining fatty acid composition of eluted TAG by capillary gas chromatography (GC). Stereospecific analysis (fatty acid position) was accomplished by partially hydrolyzing TAG with ethyl magnesium bromide and immediately derivatizing the resulting diacylglycerols (DAG) with (S)-(+)-1-(1-naphthyl)ethyl isocyanate. The derivatized sn-1,2-DAG were completely resolved from the sn-2,3-DAG on two 25 mm × 4.6 mm 3 μ silica HPLC columns. The columns were chilled to −20°C to obtain baseline resolution of collected peaks. The distribution of fatty acids on each position of the glycerol backbone was derived from the fatty acid compositions of the two DAG groups and the unhydrolyzed oil. Results for the sn-2 position were verified by hydrolyzing oils with porcine pancreatic lipase, isolating the resulting sn-2 monoacylglycerols by TLC, and determining the fatty acid compositions by GC. Results demonstrated that alterations in the total fatty acid composition of these seed oils are determined by the concentration of TAG species that contain at least one of the modified acyl groups. As expected, no differences were found in TAG with fatty acid quantities unaffected by the specific mutation. In lieu of direct metabolic or enzymatic assay evidence, the authors’ positional data are nevertheless consistent with TAG biosynthesis in these lines being driven by the mass action of available acyl groups and not by altered specificity of the acyltransferases, the compounds responsible for incorporating fatty acids into TAG.  相似文献   

11.
Triacylglycerol structure of human colostrum and mature milk   总被引:2,自引:0,他引:2  
Because triacylglycerol (TAG) structure influences the metabolic fate of its component fatty acids, we have examined human colostrum and mature milk TAG with particular attention to the location of the very long chain polyunsaturated fatty acid on the glycerol backbone. The analysis was based on the formation of various diacylglycerol species from human milk TAG upon chemical (Grignard degradation) or enzymatic degradation. The structure of the TAG was subsequently deduced from data obtained by gas chromatographic analysis of the fatty acid methyl esters in the diacylglycerol subfractions. The highly specific TAG structure observed was identical in mature milk and colostrum. The three major fatty acids (oleic, palmitic and linoleic acids) each showed a specific preference for a particular position within milk TAG: oleic acid for thesn-1 position, palmitic acid for thesn-2 position and linoleic acid for thesn-3 position. Linoleic and α-linolenic acids exhibited the same pattern of distribution and they were both found primarily in thesn-3 (50%) andsn-1 (30%) positions. Their longer chain analogs, arachidonic and docosahexaenoic acids, were located in thesn-2 andsn-3 positions. These results show that polyunsaturated fatty acids are distributed within the TAG molecule of human milk in a highly specific fashion, and that in the first month of lactation the maturation of the mammary gland does not affect the milk TAG structure.  相似文献   

12.
Triacylglycerols (TAG) were purified from the storage lipids extracted from the seeds of several conifer species (Taxus baccata, Larix decidua, Sciadopytis verticillata, and Juniperus communis), each species belonging to one of the four families Taxaceae, Pinaceae, Taxodiaceae, and Cupressaceae, respectively. Each species was characterized by a high content of 5,9-18:2, 5,9,12-18:3, 5,11,14-20:3, or 5,11,14,17-20:4 acids, respectively. TAG were partially deacylated with ethylmagnesium bromide, and the resulting 1,2-, 2,3-diacylglycerols (DAG), and 2-monoacylglycerols (MAG) were purified by thin-layer chromatography. 1,2- and 2,3-DAG were further fractionated by chiral column high-performance liquid chromatography of the 3,5-dinitrophenylurethane derivatives. Alternately, TAG were subjected to porcine pancreatic lipase, and the resulting 2-MAG were purified for further analysis. Gas-liquid chromatography of fatty acid methyl esters prepared from the separated DAG and MAG, coupled with appropriate calculations, indicated that the Δ5-olefinic acids, irrespective of the species, chainlengths and number of ethylenic bonds, were considerably enriched in the sn-3 position of TAG where they accounted for ca. 35 to 74 mole% of fatty acids esterified to this position (depending on the initial level of total Δ5-olefinic acids in TAG), which corresponded to 79–94% of Δ5-olefinic acids esterified to the three positions. On the other hand, Δ5-olefinic acids were less than 10% in the sn-2 position and less than 6% in the sn-1 position of TAG. This specific enrichment of Δ5-olefinic acids in the sn-3 position thus appears to be a general characteristic of conifer seed TAG. These results were extended to TAG from the seeds of two pine species (Pinus koraiensis and P. pinaster) that are rich in Δ5-olefinic acids and available commercially on a ton-scale.  相似文献   

13.
Positional‐species composition (PSC) of 1,2,3‐triacyl‐sn‐glycerols (TAG) from the arils of mature fruits of 13 species of Euonymus L. genus was established. The residues of six major fatty acids (FA), palmitic, stearic, hexadecenoic (H), octadecenoic (O), linoleic (L), and linolenic, were present in the TAG. PSC of TAG was determined by their partial lipase hydrolysis. By using hierarchical cluster and principal component analyses, it was definitely demonstrated that separate taxonomic units forming this genus were significantly distinguished as regards PSC of TAG. In particular, the Euonymus subgenus greatly exceeded the Kalonymus subgenus in both total content of L in TAG and in the rate of its incorporation into their mid‐position, while TAG of Kalonymus were marked by a prevalence of O‐TAG and sn‐2‐O isomers. Thus, these subgenera were significantly distinct in the rate of incorporation of O and L residues in the sn‐2 position of TAG molecules. Meanwhile, the TAG from the Euonymus section species were marked by an enhanced concentration of H and the incorporation of H in UUU TAG was much more active than in other TAG types. As for positional‐type composition of TAG, saturated FA were always virtually absent in the sn‐2 position of Euonymus aril TAG.  相似文献   

14.
Phospholipid (PL) fatty acid composition and stereospecific distribution of 25 genetically modified soybean lines with a wide range of compositions were determined by gas chromatography and phospholipase A2 hydrolysis. Pl contained an average of 55.3% phosphatidylcholine, 26.3% phosphatidylethanolamine, and 18.4% phosphatidylinositol. PL class proportions were affected by changes in overall fatty acid composition. PL fatty acid composition changed with oil fatty acid modification, especially for palmitate, stearate, and linolenate. Stereospecific analysis showed that saturated fatty acids were primarily located at the sn-1 position of all PL, and changes of the saturates in PL were largely reflected on this position. Oleate was distributed relatively equally between the sn-1 and sn-2 positions. Linoleate was much more concentrated on sn-2 than on sn-1 position for all PL. Linolenate was distributed relatively equally at low concentration but preferred sn-2 position at high concentration.  相似文献   

15.
Tong Wang  Xiaosan Wang  Xingguo Wang 《Lipids》2016,51(10):1115-1126
Interesterification or the randomization reaction changes fatty acid positional distribution and solid fat content of fats, which may consequently affect fat absorption and metabolism. It is well established that saturated fatty acids in the sn‐2 position of triacylglycerols (TAG) have better digestibility and lower postprandial chylomicron clearance compared to those in the sn‐1,3 positions in animal experiments. TAG structure is also shown to affect fasting lipid level and atherosclerosis in animals, but fat interesterification it has been shown to not affect fasting lipid level in human adults. However, its effect on postprandial responses is controversial. In this review, the complex results of studies of interesterification and lipemia were briefly discussed. More importantly, the confounding of two factors that are both changed by interesterification, TAG structure and solid fat content as the main limitation on understanding how interesterification affects lipemia is emphasized. Separation of the two factors is possible using paired fats as demonstrated. This paper also discusses some intriguing effects of fats having saturated fatty acids in the sn‐2 position and the need for future research.  相似文献   

16.
In this work the molecular fatty components of Pecorino Sardo Protected Designation of Origin (PS PDO) cheese were characterized through an exhaustive investigation of the 1H- and 13C-NMR spectra of the extracted lipids. Several fatty acids (FA), such as long chain saturated, oleic, linoleic, linolenic, butyric, capric, caprylic, caproic, trans vaccenic, conjugated linoleic acid (cis9, trans11–18:2), and caproleic (9–10:1) were unambiguously detected. The positional isomery of some acyl groups in the glycerol backbone of triacylglycerols (TAG) was assessed. Furthermore, the NMR signals belonging to sn-1,2/2,3, sn-1,3 diacylglycerols (DAG), and free fatty acids (FFA) were analysed as a measure of lipolytic processes on cheese. Lastly, 1H-NMR resonances of saturated aldehydes and hydroperoxides were detected, their very low intensity indicating that the lipid oxidation process can be considered to be of minor relevance in Pecorino Sardo cheese.  相似文献   

17.
Ricinoleate, a monohydroxy fatty acid in castor oil, has many industrial uses. Dihydroxy and trihydroxy fatty acids can also be used in industry. We report here the identification of diacylglycerols (DAG) and triacylglycerols (TAG) containing trihydroxy fatty acids in castor oil. The C18 HPLC fractions of castor oil were used for mass spectrometry of the lithium adducts of acylglycerols to identify trihydroxy fatty acids and the acylglycerols containing trihydroxy fatty acids. Two DAG identified were triOH18:1–diOH18:1 and triOH18:0–OH18:1. Four TAG identified were triOH18:1–OH18:1–OH18:1, triOH18:0–OH18:1–OH18:1, triOH18:1–OH18:1–diOH18:1 and triOH18:0–OH18:1–diOH18:1. The structures of these two newly identified trihydroxy fatty acids were proposed as 11,12,13-trihydroxy-9-octadecenoic acid and 11,12,13-trihydroxyoctadecanoic acid. The locations of these trihydroxy fatty acids on the glycerol backbone were almost 100% at the sn-1,3 positions or at trace levels at the sn-2 position. The content of these acylglycerols containing trihydroxy fatty acids was at the level of about 1% or less in castor oil.  相似文献   

18.
The objective of this study was to produce low saturated, zero‐trans, interesterified fats with 20 or 30 % saturated fatty acids (SFA) such as C16:0 or C18:0. Tripalmitin (TP) or tristearin (TS) was blended with high oleic sunflower oil (HOSO) at different ratios (0.1:1, 0.3:1, and 0.5:1 [w/w]). Total C16:0 and C18:0 compositions of the resulting TP/HOSO and TS/HOSO blends, respectively, were plotted against blending ratios. Linear interpolation was used to estimate blending ratios that would yield physical blends (PB) with 20 or 30 % SFA. Interesterified blends (IB) were then synthesized from the customized PB using Lipozyme TL IM as the biocatalyst. Total and sn‐2 fatty acid compositions, triacylglycerol (TAG) molecular species, thermal behavior, and oxidative stability of PB and IB were compared. The total fatty acid compositions of PB and IB were similar but fatty acid positional distributions and TAG molecular species composition differed. IB contained 5–10 % more SFA at the sn‐2 position than corresponding PB. Furthermore, interesterification generated mono‐ and disaturated TAG species which resulted in broader melting profiles for IB. However, IB had lower oxidative stability than PB. The reformulation of food products with zero‐trans interesterified fats may be advantageous to the reduction of cardiovascular disease burden in the population.  相似文献   

19.
A mixture of beef tallow and rapeseed oil (1:1, wt/wt) was interesterified using sodium methoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM) and Candida antarctica (Novozym 435) as catalysts. Chemical interesterifications were carried out at 60 and 90 °C for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt‐% CH3ONa. Enzymatic interesterifications were carried out at 60 °C for 8 h with Lipozyme IM or at 80 °C for 4 h with Novozym 435. The biocatalyst doses were kept constant (8 wt‐%), but the water content was varied from 2 to 10 wt‐%. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a nontriacylglycerol fraction, which contained free fatty acids, mono‐, and diacylglycerols. It was found that the concentration of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower compared with the nonesterified blends. The sn‐2 and sn‐1,3 distribution of fatty acids in the TAG fractions before and after interesterification were determined. These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn‐2 position remained practically unchanged, compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stabilities, as assessed by Rancimat induction times. Addition of 0.02% BHA and BHT to the interesterified fats improved their stabilities.  相似文献   

20.
We investigated the influence of the intramolecular fatty acid distribution of dietary triacyl-sn-glycerols (TAG) rich in n-3 polyunsaturated fatty acids (PUFA) on the structure of chylomicron TAG. Fish oil and seal oil, comparable in fatty acid compositions but with different contents of major n-3 PUFA esterified at thesn-2 position (20:5n-3, 46.6%, and 5.3%; 22:6n-3, 75.5%, and 3.8%, respectively), were fed to rats. Mesenteric lymph was collected and the chylomicrons were isolated by ultracentrifugation. The fatty acid composition of chylomicrons largely reflected the fatty acid composition of the oils administered. The intramolecular fatty acid distributions of the TAG fed were reflected in the chylomicron TAG as the fraction of the total contents observed in thesn-2 position of 20:5n-3 were 23.6 and 13.3%, and of 22:6n-3 were 30.6 and 5.4% for resultant chylomicrons following fish oil and seal oil administration, respectively. Thus, after seal oil administration, significant higher load of n-3 PUFA was esterified in thesn-1,3 positions of chylomicron TAG compared with fish oil administration (P<0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号