首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The School of Engineering at Vanderbilt University requires all engineering students in their first semester to take a course that introduces computers in engineering. Two questions arise: is the best setting in which to teach this type of material either a combination of lecture and laboratory or all‐laboratory; and does a student‐owned laptop computer contribute more to learning? For two years the course was organized with these two different modes of instruction. For a third year the students learned in the all‐laboratory environment and 30 percent of the students used their own laptop computer. At the end of the semester an in‐depth questionnaire with quantitative ratings was given to the students to determine if there were differences in their learning preferences. Contingency tables were used to compare responses. There were several statistically significant differences in student responses favoring the all‐laboratory mode and students using laptop computers. Several of them are: the students are much more comfortable with computers at the end of the semester; either laboratory or working by oneself were the preferred settings for learning; and lecture was not a preferred setting for learning any topic.  相似文献   

3.
Previous research has identified several variables that affect students' course satisfaction and gains in learning outcomes. The purpose of this article is to provide the reader with insights about the relationships between faculty‐student interaction and students' perceptions of selected skills and attitudes. This study specifically examined the relationships between engineering faculty teaching practices, classroom climate, and students' perceptions of their gains in communication skills, problem‐solving skills, occupational awareness, and engineering competence in a curriculum emphasizing engineering design activities. Data were gathered from more than 1,500 students taking the first‐year design course offered at 19 campuses of the Penn State system over a period of two years. The results suggest that faculty interacting with and providing constructive feedback to students were significantly and positively related to students' self‐reported gains in several design and professional skills. These relationships remained after controlling for student demographic characteristics and campus location. Recommendations regarding specific teaching practices are provided.  相似文献   

4.
Industries are tending toward computer‐based simulation, monitoring, and control of processes. This trend suggests an opportunity to modernize engineering laboratory pedagogy to include computer experiments as well as tactile experiments. However, few studies report the impact of simulations upon student learning in engineering laboratories. We evaluated the impact of computer‐simulated experiments upon student learning in a senior unit operations laboratory. We compared data on control and test groups from three sources: 1) a comprehensive exam over the course; 2) a questionnaire answered by students regarding how well the areas of ABET Engineering Criterion 3 (a‐k) were met; and 3) oral presentations given by the students. Our results indicate that student learning is not adversely affected by introducing computer‐based experiments. We therefore conclude that, while the tactile laboratory should remain in the engineering curriculum, the pedagogy can reflect the increasing use of information technology in the manufacturing industries without compromising student learning.  相似文献   

5.
The James Stice strategies for teaching problem‐solving and improving student learning have been adopted in the development of a sophomore‐level “Materials, Manufacturing & Design” course. The curriculum, the assessment method, and the results of student evaluation over a three‐year period are described. Correlation between assessments by two faculty members (in the form of design project written‐report and oral‐presentation grades) and students self‐assessment (in the form of a retrospective survey employing a Likert‐type scale and student written comments) show that the Stice strategies are successful in teaching engineering design to sophomores.  相似文献   

6.
Horizontal and vertical integration of engineering education is achieved through an early‐design project where students get acquainted with Total Quality Management (TQM) principles and design processes from year‐one of their University education. The project is embedded in the undergraduate chemical engineering curriculum as an activity that involves horizontally several first‐year subjects and vertically a fourth‐year Project Management Practice course and a related Project Management subject. An assessment of the integrated design project indicates that effective teaching and learning spreads through the curriculum, with fourth‐year students acting as project managers and experiencing engineering practice. These management and leadership training processes include a shared responsibility in the organization and in the development of the project, which are key factors for the success of the integrated activity. They are also a first step towards the ETSEQ goal of becoming a sustainable student‐centered educational system.  相似文献   

7.
A survey incorporating qualitative measures of student self‐efficacy beliefs was administered to 1,387 first‐year engineering students enrolled in ENGR 106, Engineering Problem‐Solving and Computer Tools, at Purdue University. The survey was designed to identify factors related to students' self‐efficacy beliefs, their beliefs about their capabilities to perform the tasks necessary to achieve a desired outcome. Open‐ended questions prompted students to list factors affecting their confidence in their ability to succeed in the course. Students were then asked to rank these factors based on the degree to which their self‐efficacy beliefs were influenced. Gender trends emerged in student responses to factors that affect confidence in success. These trends are discussed in light of the categories identified by efficacy theorists as sources of self‐efficacy beliefs. The results presented here provide a useful look at the first‐year engineering experiences that influence students' efficacy beliefs, an important consideration in explaining student achievement, persistence, and interest.  相似文献   

8.
A plant trip provides subjects for team projects and lecture examples in a sophomore chemical engineering course, thus becoming a unifying “theme” for the course. The “theme” structure is intended to improve student mastery of course material by helping students relate different course topics to one another via real equipment and processes. Here, performance in a subsequent junior chemical engineering course by students from the “theme course” is compared with performance by students who took the sophomore course in a traditional lecture‐homework‐exam format. Theme course graduates claim better retention of concepts from the sophomore course, though their scores on exam questions testing their knowledge, comprehension, and application of these concepts did not differ significantly from that of students from the traditional course. Theme course graduates did earn higher grades in the junior course, due to better performance on exam questions requiring higher level skills such as analysis, synthesis, and evaluation. Students were enthusiastic about the course structure, and expressed excitement about learning from “real life.” Thus the “theme” structure results in early student success in the skills necessary for engineering design, and generates student enthusiasm for engineering.  相似文献   

9.
The College of Engineering at the University of Cincinnati has evaluated the use of instructional technologies to improve the learning process for students in fundamental engineering science courses. The goal of this effort was to both retain more students in engineering programs and improve student performance through appropriate use of technology. Four modes of instruction were used to teach an engineering fundamentals course in statics. A traditional instructor‐led course, a Web‐assisted course, a streaming media course, and an interactive video course were all presented using a common syllabus, homework, tests, and grading regimen. Evaluations of final course grades indicate that use of instructional technology improved student performance when compared with traditional teaching methods. Student satisfaction with technology varied considerably with the Web‐assisted format having the highest student approval rating of the technologies. The results indicate that time on task and interest in content can be improved through the appropriate use of technology.  相似文献   

10.
Background Distance learning course formats can alter modes of information exchange and interpersonal interaction relative to traditional course formats. Purpose (Hypothesis ) To determine the effect of a distance course format on the knowledge acquisition (cognitive learning) and satisfaction (affective learning) of students, we investigated student learning responses and social presence during a graduate‐level engineering course taught via traditional (i.e., professor present in the classroom) and synchronous distance‐learning formats. Design /Method Direct quantification of participation, academic performance assessment based on homework and exam scores, and survey‐based assessments of student perceptions of the course were collected. Based on these data, cognitive and affective learning responses to different technological and interaction‐based aspects of the course were determined for each course format. Results We show that while affective learning decreased for students in the distance format course relative to the traditional format, cognitive learning was comparable. Our results suggest that loss of satellite connection and audio losses had a stronger negative effect on student perceptions than video disturbances, and that participation was the most important factor influencing affective learning. Conclusions While our findings do not suggest that cognitive learning is strongly affected by social presence, implementing strategies to enhance social presence may improve the overall learning experience and make distance learning more enjoyable for students.  相似文献   

11.
This research focuses on the development of a methodology to evaluate student attitudes towards technology in the classroom and the impact of this technology on student learning. A survey was developed and tested to evaluate the impact of introducing Personal Digital Assistants (PDAs) in a traditional college classroom setting. PDAs were introduced in an introductory course in the College of Engineering at Oregon State University. A reliable attitude assessment tool was developed as a result of this research. Initial results of this study also provide empirical data that engineering students respond favorably to the introduction of PDAs in a traditional classroom setting. Preliminary results also provide limited evidence that student attitudes may vary based on gender, age, and/or ethnicity. Standard student performance metrics (course assignment and exam scores) and student self‐evaluations were used to assess the impact on student learning and are discussed.  相似文献   

12.
13.
In response to the demand for enhanced design, problem‐solving, and team skills in engineering graduates, Penn State has instituted a number ofteam‐based, project‐learning courses, including one taken by nearly every first‐year engineering student. To determine the impact of these experiences on our students we have begun a cross‐sectional and longitudinal study of their intellectual development based upon the Perry model. In this paper, we describe the research methodology and results for the initial group of first‐year students interviewed. The results of the study include the effects on intellectual development of the first‐year design course, gender, honors status, and the students' academic ability as indicated by SAT scores and grade point average. Design experience was positively related to enhanced intellectual development. Honors status, gender, and academic ability were not significantly related to Perry rating. We discuss the implications of these findings for instruction and curricular reform.  相似文献   

14.
Background Our goal is to improve student learning in foundation engineering courses. These courses are prerequisite to many higher‐level courses and are comprised of critically needed concepts and skills. Purpose (Hypothesis ) We hypothesize that learning is improved by providing rapid feedback to students on their understanding of key concepts and skills. Such feedback also provides students with insight into their strategies for learning. Design /Method In two consecutive years, we conducted this study in two sections of a lower‐level engineering mechanics course, Statics. One author taught both sections and a crossover design of experiment was used. In a crossover design, one section was randomly chosen to receive feedback with handheld computers (the “treatment” group) while the other received the “control,” which was either a feedback system using flashcards (in year 1) or no feedback (year 2). After a certain period, the two sections swapped the treatment and control. Student performance on a quiz at the end of each treatment period provided the data for comparison using an analysis of variance model with covariates. Results Findings from year 1 showed that there was no significant difference using either rapid‐feedback method. In year 2 we found a significant and positive effect when students received feedback. Conclusions This is a noteworthy finding, albeit within the constraints of the environment in which we conducted the study, that provides more evidence for the value of rapid feedback and the currently popular “clickers” that many professors are employing to promote classroom interaction and student engagement.  相似文献   

15.
Many recent studies demonstrate that cooperative learning provides a variety of educational advantages over more traditional instructional models, both in general and specifically in engineering education. Little is known, however, about the interactional dynamics among students in engineering work groups. To explore these dynamics and their implications for engineering education, we analyzed work sessions of student groups in a sophomore‐level chemical engineering course at North Carolina State University. Using conversation analysis as a methodology for understanding how students taught and learned from one another, we found that group members generally engaged in two types of teaching‐learning interactions. In the first type, transfer‐of‐knowledge (TK) sequences, they took on distinct teacher and pupil roles, and in the second, collaborative sequences (CS), they worked together with no clear role differentiation. The interactional problems that occurred during the work sessions were associated primarily with TK sequences, and had to do with students who either habitually assumed the pupil's role (constant pupils) or habitually discouraged others' contributions (blockers). Our findings suggest that professors can facilitate student group interactions by introducing students to the two modes of teaching interaction so group members can effectively manage exchanges of knowledge, and also by helping students distribute tasks in a way that minimizes role imbalances.  相似文献   

16.
This study explored student competitions for undergraduate engineering and engineering technology students to determine which institutions consistently win and what factors support their winning, and to obtain some insights into the benefits for students. Forty‐four student competitions for engineering and technology students were identified, and the first, second, and third place institutions from 2001 to 2003 were tabulated. Although one institution would often win a particular competition, no institution was a consistent winner for all competitions. Advisers of winning institutions reported that their institutions won consistently because of a dedicated faculty advisor and/or the close alignment of the competition with the institution's curriculum. Also important are a tradition of winning, the quality of the students, and (for hands‐on competitions) the availability of resources. Additional research is needed to determine if student competitions increase student learning.  相似文献   

17.
This paper presents the results of a project, which investigated the potential of fully using previously unreleased data from the nationally normed Fundamentals of Engineering (FE) examination to assess learning in key engineering and science topics. In the past, very limited information was released by the National Council of Examiners for Engineers and Surveyors (NCEES) for the eight hour FE examination, which is composed of 150–200 questions in ten morning and five afternoon topics. For the purposes of this project the NCEES agreed to release information to the University of Missouri-Rolla (UMR) to permit the value of the FE data in describing UMR student learning in key engineering and science topics to be assessed. The analysis of the FE data was undertaken in the period 1993–1996 for students in twelve engineering disciplines at UMR. The overall conclusion of the project is that the enhanced level of data released from the FE by NCEES is of value to individual programs, schools and institutions in assessing student learning and in identifying areas of concern. However, the overall value of this information is compromised by variable student motivation and the confidentiality of the questions used in the exam. Other conclusions are that UMR student scores are below faculty expectations, that the FE exam is not equally applicable to all engineering disciplines, and that the academic level of the exam may be lower than faculty thought.  相似文献   

18.
The engineering community has recognized the need for a higher retention rate in freshman engineering. If we are to increase the freshman retention rate, we need to better understand the characteristics of academic success for engineering students. One approach is to compare academic performance of engineering students to that of non‐engineering students. This study explores the differences in predicting academic success (defined as the first year GPA) for freshman engineering students compared to three non‐engineering student sectors (Pre‐Med, STEM, and non‐STEM disciplines) within a university. Academic success is predicted with pre‐college variables from the UCLA/CIRP survey using factor analysis and regression analysis. Except for the factor related to the high school GPA and rank, the predictors for each student sector were discipline specific. Predictors unique to the engineering sector included the factors related to quantitative skills (ACT Math and Science test scores and placement test scores) and confidence in quantitative skills.  相似文献   

19.
The influence of the preferred learning styles and psychological types on academic performance have been assessed for engineering students. The subjects of the experiments were different groups of students taking the first and the second courses in the civil engineering department. A holistic teaching/learning approach was designed based on the fact that people have different psychological characters and learn in different ways. During the course, many teaching/learning techniques were introduced to foster the learning process for different learning styles and psychological types. The study explores the implications of the learning styles and the psychological temperaments on the academic performance for experimental and control groups. The Learning Type Measure (LTM) and the Myers Briggs Type Indicator (MBTI) instruments were used to assess the psychological profiles and the learning preferences of the students. The paper will discuss the result of a comparison of the final grades of two groups of engineering students taught using two different instructional formats. As will be shown, the holistic teaching and learning environment helped those engineering students that are traditionally less successful.  相似文献   

20.
Maintaining student interest is more than an academic exercise. Institutions or departments that fail to challenge and actively involve their students in the learning process risk losing them to competing programs where the curricula are more dynamic and relevant. Within the Department of Nuclear Engineering at Oregon State University, we continually seek innovative ways to promote student retention while maintaining academic excellence. One recent effort was to restructure a first‐year nuclear engineering/health physics course. Using nuclear techniques, students were required to solve a fictitious murder. In the process they learned about teamwork, nuclear forensics methods, radiation protection, and basic radiation interactions. The class members were brought into the mystery playing the part of “graduate students” who helped their police‐detective uncle solve the case. To assist in their investigation the students subpoenaed expert “witnesses” to educate them on nuclear principles. The students, through homework, explained their actions, methods, and reasoning to a nontechnical participant (their “uncle“). By building on knowledge gained through interviews and homework, the students were able to solve the mystery. This mode of teaching requires extensive hands‐on faculty participation. However, the potential long‐term benefit is increased comprehension of course content as well as greater student interest and retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号