首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper reports the synthesis of Al-doped PbS (PbS:Al) thin films by spray pyrolysis technique on glass substrates. Al doping concentration is varied as 0, 2, 4, 6 and 8 at.% in undoped PbS. Undoped and doped films exhibit cubic crystal structure with a (2 0 0) preferential orientation. The 2θ value of the doped films shifts towards higher Bragg angles confirming a contraction in their unit cell volume. The crystallite size values determined using the Scherrer formula decreased from 27.88 to 25.79 nm with increase in Al doping concentration. EDX spectra confirmed the presence of Al in the doped films. Increased transparency and blue shift in the optical band gap is observed with Al doping. The resistivity range of all the films were found to be in the order of 102 Ω-cm. Increased transparency, widened band gap and decreased resistivity observed make PbS:Al films suitable for tandem solar cells which uses multilayered pn junctions.  相似文献   

2.
Thin films of Lead sulphide (PbS) were grown on soda lime glass substrate by Successive Ionic Layer Adsorption and Reaction method from acidic, neutral and alkaline cationic precursor reaction bath by keeping the pH of the anionic precursor invariant. The structural and morphological aspects of the as prepared samples were investigated using XRD and SEM results. The as-prepared samples were polycrystalline with nanometer sized grains and identified as galena type cubic structure. The values of average crystallite size were found to be in the range 22–30?nm. The SEM micrographs show variations in morphology. Optical studies revealed the existence of both direct and indirect band gap with values in the range of 1.65–1.98 and 0.61–0.90?eV respectively. The room temperature conductivity of the PbS thin films were in the range 1.19?×?10?8–5.92?×?10?8?Ω?cm?1. The optical band gap energy has inverse relation with grain size and electrical conductivity is closely related to structural parameters like grain size, crystallinity and micro strain. The estimated lattice parameter, grain size, optical band gaps, solid state and electrical properties were correlated with pH of the cationic solution. In this work, we establish that the pH of the cationic precursor media has colossal effect on the structural, morphological, optoelectronic, solid-state and electrical properties of PbS thin films.  相似文献   

3.
A series of aluminum doped zinc oxide thin films with different thickness (25–150 nm) were deposited on indium tin oxide coated polyethylene terephthalate substrates by radio frequency magnetron sputtering method at room temperature. The structural, optical and electrical properties of the films were investigated by X-ray Diffractometer, UV–Vis spectrometer and Hall Effect Measurement System. All the obtained films were polycrystalline with a hexagonal structure and a preferred orientation along [002] direction with the c-axis perpendicular to the substrate surface. The optical energy band gap (Eg) values of the films were found to be in the range from 3.36 to 3.26 eV, and their average optical transmissions were about 75 % in the visible region. The films had excellent electrical properties with the resistivities in the range from 2.78 × 10?5 to 2.03 × 10?4 Ω cm, carrier densities more than 3.35 × 1021 cm?3 and Hall mobilities between 5.77 and 11.13 cm2/V s.  相似文献   

4.
Using an Indium tin oxide (ITO) ceramic target (In2O3:SnO2, 90:10 wt%), ITO thin films were deposited by conventional direct current magnetron sputtering technique onto glass substrates at room temperature. The obtained ITO films were annealed at 400 °C for different annealing times (1, 2, 5, 7, and 9 h). The effect of annealing time on their structural, optical and electrical properties was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microcopy (AFM), ultra violet–visible (UV–Vis) spectrometer, and temperature dependence Hall measurements. XRD data of obtained ITO films reveal that the films were polycrystalline with cubic structure and exhibit (222), (400) and (440) crystallographic planes of In2O3. AFM and Scanning Electron Microscopy SEM have been used to probe the surface roughness and the morphology of the films. The refractive index (n), thickness and porosity (%) of the films were evaluated from transmittance spectra obtained in the range 350–700 nm by UV–Vis. The optical band gap of ITO film was found to be varying from 3.35 to 3.47 eV with the annealing time. The annealing time dependence of resistivity, carrier concentration, carrier mobility, sheet resistance, and figure of merit values of the films at room temperature were discussed. The carrier concentration of the films increased from 1.21 × 1020 to 1.90 × 1020 cm?3, the Hall mobility increased from 11.38 to 18 cm2 V?1 s?1 and electrical resistivity decreased from 3.97 × 10?3 to 2.13 × 10?3 Ω cm with the increase of annealing time from 1 to 9 h. Additionally, the temperature dependence of the carrier concentration, and carrier mobility for the as-deposited and 400 °C annealed ITO films for 2 and 9 h were analysed in the temperature range of 80–350 K.  相似文献   

5.
Lead selenide (PbSe) thin films have been synthesized by the established photochemical deposition technique using lead nitrate and lead acetate as sources for the metal ions and sodium seleno sulphate as the selenium source along with triethanolamine, ammonia and hydrazine hydrate as complexing agents. A comprehensive study of the effect of substrate materials on physical properties of as deposited PbSe thin films is reported in this work. Two substrates were used in this investigation, namely soda lime glass slides and gold coin corning glass slides. The solution is irradiated with UV light and the photochemical reactions in the aqueous solution resulted in highly adherent metallic thin films. X-ray diffraction (XRD), scanning electron microscopy, optical and electrical measurement techniques were used for film characterization. The XRD analysis confirmed that all films were cubic, regardless of the cationic precursors and substrates used. The scanning electron microscope micrographs showed variations in morphology. The optical studies revealed that the films have good absorption in the visible region. The remarkable success of our effort was that we have been able to modify optical band gap of PbSe thin films over a wide spectral range by a cost effective route. The band gaps estimated from the transmission spectra were in the range 1.32–1.40 eV for films deposited on soda lime glass substrates and 1.46–1.55 eV for corning glass substrates. The room temperature conductivity of the PbSe films were in the range of 3.71 × 10?7–513 × 10?7 (Ω cm)?1. The as deposited PbSe thin films with low transmittance in the visible region coupled with an appreciable reflectance in infrared region were found to satisfy the basic requirements for solar control coatings for window glazing applications in warm climates. Through this work we established that irrespective of metal salts, soda lime glass substrate was superior to corning glass substrate.  相似文献   

6.
Applying radio-frequency (rf) magnetron sputtering technique, Ga–Ti co-doped ZnO [ZnO:(Ga,Ti)] transparent conductive oxide films were deposited onto glass substrates. The films were characterized by X-ray diffraction, four-point probe and UV–visible spectrophotometer. The influence of sputtering pressure on microstructure and optoelectronic properties of the films was investigated. The results show that all the films are polycrystalline with a hexagonal wurtzite structure and grow preferentially in the (002) direction. The ZnO:(Ga,Ti) films deposited at sputtering pressure of 0.4 Pa exhibit the maximum grain size of 86.6 nm, the highest transmittance of 85.9 %, the lowest resistivity of 1.67 × 10?3 Ω cm, and the highest figure of merit of 1.38 × 10?2 Ω?1. The optical constants such as refractive index, extinction coefficient, dielectric constant and dissipation factor were determined using the method of whole optical spectrum fitting. Meanwhile, the dispersion behaviour of the films was studied by the single electronic oscillator model. The oscillator parameters and optical energy gaps were achieved. The results demonstrate that the microstructure and optoelectronic properties of the films are closely related to the sputtering pressure.  相似文献   

7.
Fluorine doped tin oxide (FTO) thin films with adequate properties to be used as transparent electrical contact for PV solar cells were synthesised using the spray pyrolysis technique, which provides a low cost operation. The deposition temperature and the fluorine doping have been optimized for achieving a minimum resistivity and maximum optical transmittance. No post-deposition annealing treatments were carried out. The X-ray diffraction study showed that all the FTO films were polycrystalline with a tetragonal crystal structure and preferentially oriented along the (200) direction. The grain size ameliorates with the increase in substrate temperature. The samples deposited with the substrate temperature at 440 °C and fluorine content of 20 wt % exhibited the lowest electrical resistivity (1.8 × 10?4 Ω cm), as measured by four-point probe. Room-temperature Hall measurements revealed that the 20 wt% films are degenerate and exhibit n-type electrical conductivity with carrier concentration of ~4.6 × 1020 cm?3, sheet resistance of 6.6 Ω/□ and a mobility of ~25 cm2 V?1 s?1. In addition, the optimized growth conditions resulted in thin films (~500 nm thickness) with average visible transmittance of 89 % and optical band-gap of 3.90 eV. The electrical and optical characteristics of the deposited films revealed their excellent quality as a TCO material.  相似文献   

8.
This study reports the preparation of Cu2ZnSnS4 (CZTS) thin films by magnetron sputtering deposition with a Cu–Zn–Sn ternary alloy target and sequential sulfurization. The effects of substrate temperatures on the structural, morphological, compositional as well as optical and electrical properties were characterized. The results showed the CZTS thin films prepared by sulfurization at substrate temperature of 570 °C yielded secondary phases along with CZTS compound. The relatively good properties of CZTS thin film were obtained after sulfurization at substrate temperature of 550 °C. This CZTS film showed compact structure with large grain size of 900 nm, direct optical band gap of 1.47 eV, optical absorption coefficient over 104 cm?1, resistivity of 4.05 Ω cm, carrier concentration of 8.22 × 1018 cm?3, and mobility of 43.38 cm2 V?1 S?1.  相似文献   

9.
The growth of CIGS thin films on soda-lime glass substrates at different substrate temperatures by dual ion beam sputtering system in a single-step route from a single quaternary sputtering target with the composition of Cu (In0.70 Ga0.30) Se2 was reported. The effects of the substrate temperature on structural, optical, morphological and electrical properties of CIGS films were investigated. Stoichiometry of one such film was investigated by X-ray photoelectron spectroscopy. All CIGS films had demonstrated a strong (112) orientation located at 2θ ~26.70o, which indicated the chalcopyrite structure of films. The value of full-width at half-maximum of (112) peak was reduced from 0.58° to 0.19° and crystallite size was enlarged from 14.98 to 43.05 nm as growth temperature was increased from 100 to 400 °C. However, atomic force microscope results showed a smooth and uniform surface at lower growth temperature and the surface roughness was observed to increase with increasing growth temperature. Hall measurements exhibited the minimum film resistivity of 0.09 Ω cm with a hole concentration of 2.42 × 1018 cm?3 and mobility of 28.60 cm2 V?1 s?1 for CIGS film grown at 100 °C. Film absorption coefficient was found to enhance nominally from 1 × 105 to 2.3 × 105 cm?1 with increasing growth temperature from 100 to 400 °C.  相似文献   

10.
Kesterite, Cu2ZnSnS4 (CZTS), is a promising absorber layer for use in photovoltaic cells. We report the use of copper, zinc and tin xanthates in melt reactions to produce Cu2ZnSnS4 (CZTS) thin films. The phase of the as-produced CZTS is dependent on decomposition temperature. X-ray diffraction patterns and Raman spectra show that films annealed between 375 and 475 °C are tetragonal, while at temperatures <375 °C hexagonal material was obtained. The electrical parameters of the CZTS films have also been determined. The conduction of all films was p-type, while the other parameters differ for the hexagonal and tetragonal materials: resistivity (27.1 vs 1.23 Ω cm), carrier concentration (2.65 × 10+15 vs 4.55 × 10+17 cm?3) and mobility (87.1 vs 11.1 cm2 V?1 s?1). The Hall coefficients were 2.36 × 103 versus 13.7 cm3 C?1.  相似文献   

11.
In this study, transparent conductive Al doped zinc oxide (ZnO: Al, AZO) thin films with a thickness of 40 nm were prepared on the Corning glass substrate by radio frequency magnetron sputtering. The properties of the AZO thin films are investigated at different substrate temperatures (from 27 to 150 °C) and sputtering power (from 150 to 250 W). The structural, optical and electrical properties of the AZO thin films were investigated. The optical transmittance of about 78 % (at 415 nm)–92.5 % (at 630 nm) in the visible range and the electrical resistivity of 7 × 10?4 Ω-cm (175.2 Ω/sq) were obtained at sputtering power of 250 W and substrate temperature of 70 °C. The observed property of the AZO thin films is suitable for transparent conductive electrode applications.  相似文献   

12.
Indium-doped cadmium oxide (CdO:In) films were prepared on glass and sapphire substrates by pulsed filtered cathodic arc deposition (PFCAD). The effects of substrate temperature, oxygen pressure, and an MgO template layer on film properties were systematically studied. The MgO template layers significantly influence the microstructure and the electrical properties of CdO:In films, but show different effects on glass and sapphire substrates. Under optimized conditions on glass substrates, CdO:In films with thickness of about 125 nm showed low resistivity of 5.9 × 10?5 Ωcm, mobility of 112 cm2/Vs, and transmittance over 80 % (including the glass substrate) from 500 to 1500 nm. The optical bandgap of the films was found to be in the range of 2.7 to 3.2 eV using both the Tauc relation and the derivative of transmittance. The observed widening of the optical bandgap with increasing carrier concentration can be described well only by considering bandgap renormalization effects along with the Burstein–Moss shift for a nonparabolic conduction band.  相似文献   

13.
Morphological dependence of the optoelectronic properties of sol–gel derived CdO thin films annealed at different temperatures in air has been studied. After preparing, the films were investigated by studying their structural, morphological, d.c. electrical and optical properties. X-ray diffraction results suggest that the samples are polycrystalline and the crystallinity of them enhanced with annealing temperature. The average grain size is in the range of 12–34?nm. The root mean square roughness of the films was increased from 3.09 to 6.43?nm with annealing temperature. It was observed that the electro-optical characteristics of the films were strongly affected by surface roughness. As morphology and structure changed due to heat treatment, the carrier concentration was varied from 1.13?×?1019 to 3.10?×?1019?cm?3 with annealing temperature and the mobility increased from less than 7 to 44.8?cm2 V?1 s?1. It was found that the transmittance and the band gap decreased as annealing temperature increased. The optical constants of the film were studied and the dispersion of the refractive index was discussed in terms of the Wemple–DiDomenico single oscillator model. The real and imaginary parts of the dielectric constant of the films were also determined. The volume energy loss increases more than the surface energy loss at their particular peaks.  相似文献   

14.
Due to the simultaneously superior optical transmittance and low electrical resistivity, transparent conductive electrodes play a significant role in semiconductor electronics. To enhance the electrical properties of these films, one approach is thickness increment which degrades the optical properties. However, a preferred way to optimize both electrical and optical properties of these layers is to introduce a buffer layer. In this work, the effects of buffer layer and film thickness on the structural, electrical, optical and morphological properties of AZO thin films are investigated. Al-doped zinc oxide (AZO) is prepared at various thicknesses of 100 to 300 nm on the bare and 100 nm-thick indium tin oxide (ITO) coated glass substrates by radio frequency sputtering. Results demonstrate that by introducing ITO as a buffer layer, the average values of sheet resistance and strain within the film are decreased (about 76 and 3.3 times lower than films deposited on bare glasses), respectively. Furthermore, the average transmittance of ITO/AZO bilayer is improved nearly 10% regarding single AZO thin film. This indicates that bilayer thin films show better physical properties rather than conventional monolayer thin films. As the AZO film thickness increases, the interplanar spacing, d(002), strain within the film and compressive stress of the film in the hexagonal lattice, decreases indicating the higher yield of AZO crystal. Moreover, with the growth in film thickness, carrier concentration and optical band gap (Eg) of AZO film are increased from 4.62?×?1019 to 8.21?×?1019 cm?3 and from 3.55 to 3.62 eV, respectively due to the Burstein-Moss (BM) effect. The refractive index of AZO thin film is obtained in the range of 2.24–2.26. With the presence of ITO buffer layer, the AZO thin film exhibits a resistivity as low as 6?×?10?4 Ω cm, a sheet resistance of 15 Ω/sq and a high figure of merit (FOM) of 1.19?×?104 (Ω cm)?1 at a film thickness of 300 nm. As a result, the quality of AZO thin films deposited on ITO buffer layer is found to be superior regarding those grown on a bare glass substrate. This study has been performed over these two substrates because of their significant usage in the organic light emitting diodes and photovoltaic applications as an enhanced carrier injecting electrodes.  相似文献   

15.
Nanocrystalline copper oxide (CuO) thin films have been synthesized by a sol–gel method using cupric acetate Cu (CH3COO) as a precursor. The as prepared powder was sintered at various temperatures in the range of (300–700?°C) and has been deposited onto a glass substrates using spin coating technique. The structural, compositional, morphological, electrical optical and gas sensing properties of CuO thin films have been studied by X-ray diffraction, Scanning Electron Microscopy (SEM), Four Probe Resistivity measurement and UV–visible spectrophotometer. The variation in annealing temperature affected the film morphology and optoelectronic properties. X-ray diffraction patterns of CuO films show that all the films are nanocrystallized in the monoclinic structure and present a random orientation. The crystallite size increases with increasing annealing temperature (40–45?nm).The room temperature dc electrical conductivity was increased from 10?6 to 10?5 (Ω?cm)?1, after annealing due to the removal of H2O vapor which may resist conduction between CuO grain. The thermopower measurement shows that CuO films were found of n-type, apparently suggesting the existence of oxygen vacancies in the structure. The electron carrier concentration (n) and mobility (μ) of CuO films annealed at 400–700?°C were estimated to be of the order of 4.6–7.2?×?1019?cm?3 and 3.7–5.4?×?10?5?cm2?V?1?s?1?respectively. It is observed that CuO thin film annealing at 700?°C after deposition provide a smooth and flat texture suited for optoelectronic applications. The optical band gap energy decreases (1.64–1.46?eV) with increasing annealing temperature. It was observed that the crystallite size increases with increasing annealing temperature. These modifications influence the morphology, electrical and optical properties.  相似文献   

16.
Cadmium oxide (CdO) thin films were prepared by pulsed laser deposition technique. Their structure, surface morphology, optical and electrical properties have been investigated. With a decrease in the laser energy density, the average grain size of the CdO film can be adjusted from 108 to 25 nm. High-resolution TEM observation showed that more crystalline defects like lattice distortion, dislocation and amorphous structure existed in the small grained (25 nm) CdO film, and X-ray photoelectron spectroscopy analysis confirmed that the film had more oxygen vacancies. The electrical and optical properties of the films significantly depended on the grain size. With the grain size decreasing to 25 nm, the optical band gap energy of the CdO film increased obviously from 2.82 to 3.33 eV. This change in the nature of material from semimetal to a wide band gap semiconductor, combining with its higher optical transmission (92 %) in visible light region, higher carrier concentration (1.25 × 1021 cm?3) and lower electrical resistivity (2.8 × 10?4 cm?3), makes the nano-grained CdO film very useful in optoelectronic applications.  相似文献   

17.
An extensive study on the influence of metal ion sources on the properties of chemical bath deposited lead sulphide thin films is reported in this paper. Four different lead sources namely lead nitrate, lead acetate, lead chloride and lead sulphate in alkaline medium have been used for the synthesis along with thiourea as sulphur source. The influence of lead sources on structural, surface morphological optical and electrical properties is investigated for photovoltaic applications. According to X-ray diffraction studies, all the films are poly crystalline with face centered cubic structure. The average crystallite sizes are found to be in the range 13–24 nm. The SEM photographs showed diverse morphology. The optical band gap is found to be very sensitive to the metal sources used. The direct band gap energy values obtained are in the range of 1.862–2.609 eV. The electrical conductivity varies in the range 33.6 ?7.62 × 10?9 (Ω cm)?1. Photosensitivity is closely linked to surface morphology. In this work, we established that the cationic precursor sources have significant role in physical properties of as-deposited PbS thin films. Samples prepared using nitrate as metal source are found to be most suitable to be used as solar control coating and the samples with lead acetate can be used as absorber layers for solar cell fabrication.  相似文献   

18.
Thin films of copper selenide were deposited onto amorphous glass substrates at various substrate temperatures by computerized spray pyrolysis technique. The as deposited copper selenide thin films were used to study a wide range of characteristics including structural, surface morphological, optical and electrical, Hall Effect and thermo-electrical properties. X-ray diffraction study reveals that the films are polycrystalline in nature with hexagonal (mineral klockmannite) crystal structure irrespective of the substrate temperature. The crystalline size is found to be in the range of 23–28 nm. The SEM study reveals that the grains are uniform with uneven spherically shaped and spread over the entire surface of the substrates. EDAX analysis confirmed the nearly stoichiometric deposition of the film at 350 °C. The direct band gap values are found to be in the range 2.29–2.36 eV depending on the substrate temperature. The Hall Effect study reveals that the films exhibit p-type conductivity. The values of carrier concentration and mobility for the film are found to be 5.02 × 1017 cm?3 and 5.19 × 10?3 cm2 V?1 s?1; respectively for film deposited at 350 °C.  相似文献   

19.
Cu-doped tin-sulfide thin films were deposited onto glass substrates at T = 400 °C through spray pyrolysis. The effects of Cu doping on the structural, optical, and electrical properties of the thin films were investigated. The precursor solution was prepared by dissolving tin chloride (SnCl4·5H2O) and thiourea (CS(NH3)2) in deionized water and then adding copper chloride (Cl2Cu2H2O). SnS2:Cu thin films were prepared with \(\frac{{\left[ {Cu} \right]}}{{\left[ {Sn} \right]}}\% = 0, 1, 2, 3, 4 \,{\text{at}}.\%\). X-ray diffraction analysis showed that the thin films had a preferred (001) orientation of the SnS2 phase and that the intensity of the (001) peak decreased with increased doping concentration from 1–4 at.%. Scanning electron microscopy studies indicated that the thin films had spherical grains. Characterization results of thin films showed that single-crystal grains, average grain size, optical band gap, carrier concentration, Hall mobility, and electrical resistance varied within 5–14 nm, 46–104 nm, 2.81–2.99 eV, 2.42 × 1016–26.73 × 1016 cm?3, 2.41 × 10?3–20.04 × 10?3 cm2/v.s, and 9.05–12.89 Ω cm, respectively. Hall effect studies further revealed that the films exhibited n-type conductivity.  相似文献   

20.
We fabricated Ga-doped ZnO (GZO) thin films on glass substrate by RF magnetron sputtering method with different conditions of Ga2O3 concentration, substrate temperature and working pressure. Next we investigated the electrical, optical and structural properties of the GZO thin films. At a substrate temperature of 300 °C, a working pressure of 1 mTorr, and a Ga2O3 concentration of 3 wt%, the GZO thin films showed the lowest resistivity of 3.16 × 10?4 Ω cm, a carrier concentration of 7.64 × 1020 cm?3 and a Hall mobility of 25.8 cm2/Vs. Moreover, the GZO thin films exhibited the highest (002) orientation under the same conditions and the full width at half maximum of X-ray peak was 0.34°. All GZO thin films showed the optical transmittance of more than 80 % in the visible range regardless of working conditions. The Burstein–Moss effect was observed by the change of doping concentration of Ga2O3. The GZO thin films were fabricated to have the good electrical and optical properties through optimizing doping concentration of Ga2O3, substrate temperature, working pressure. Therefore, we confirmed the possibility of application of GZO thin film as transparent conductive oxide used in flat panel display and solar cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号