首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that critical state soil mechanics provides a useful theoretical framework for constitutive modeling of soil. Most of the critical state models, including the popular modified Cam clay (MCC) model, predict soil behavior in the subcritical region fairly well. However, the predictions for heavily overconsolidated soils, in the supercritical region, are not so satisfactory. Furthermore, the critical state models were developed from triaxial test data and extension of these models into three-dimensional (3D) stress space has not been investigated thoroughly. In the present work, experiments were carried out to obtain stress–strain behavior of overconsolidated soil in triaxial compression, extension, and plane strain conditions. A novel biaxial device has been developed to conduct the plane strain tests. The experimental results were used to formulate Hvorslev–MCC model which has MCC features in the subcritical region and Hvorslev surface in the supercritical region. The model was generalized to 3D stress space using the Mohr–Coulomb failure criterion. A comparison of the model predictions with test results has indicated that the Hvorslev–MCC model performs fairly well up to the peak supercritical point, during which deformations are fairly uniform and the specimens remain reasonably intact. Limitations of this simple model in predicting postpeak localization are also discussed. The model’s predictions for volumetric response in different shear modes seem to agree reasonably well with test results.  相似文献   

2.
Tropical residual clays with a highly porous structure react to the stress changes induced by tunneling in such a way that surface settlements can be larger than crown-level settlements along a tunnel axis. This behavior, which is not readily simulated by most numerical analyses, was also observed in the Paraiso tunnel, built for the S?o Paulo Metro, Brazil. This is a shallow tunnel driven through porous clayey soils by the sequential method. Detailed results of field monitoring are presented and discussed. 3D finite-element analyses that allowed a detailed simulation of the construction sequence have been carried out, considering two distinct constitutive models for the soil: a simple elastic-perfectly-plastic Mohr-Coulomb model, and the elastoplastic model developed by Lade. The results of these analyses are compared with the observed behavior as well as with the results from a plane strain finite-element analysis. It is shown that only the 3D finite-element analysis coupled with the more sophisticated soil constitutive model provides a full reproduction of field performance, with particular relevance for the deformations in the soil mass over the tunnel.  相似文献   

3.
This paper presents a new three-dimensional (3D) anisotropic elastic viscoplastic (EVP) model for the time-dependent stress–strain behavior of K0-consolidated marine clays. A nonlinear creep function with a limit for the creep volumetric strain under an isotropic or odometer K0-consolidated stressing condition and a nonsymmetrical elliptical loading locus are incorporated in the 3D anisotropic EVP model. An α-line defines the inclination of the nonsymmetrical elliptical loading locus in the p′-q plane and is commonly used for natural soils. All model parameters are determined from the results of one set of consolidated undrained compression tests and an isotropic consolidation/creep test. With the parameters determined, the 3D anisotropic EVP model is used to simulate the behavior of K0-consolidation tests and the strain-rate-dependent stress–strain behaviors of the K0-consolidated triaxial compression and extension tests on natural Hong Kong marine deposit clay specimens. These triaxial K0-consolidated specimens were sheared at step-changed axial strain rates from +2?to?+0.2, +20, ?2 (unloading) and +2%/h (reloading) for compression tests; or from ?2?to??0.2, ?20, +2 (unloading), and ?2%/h (reloading) for extension tests, all in an undrained condition. The simulation results of all these tests are compared with the test results. The validation and limitations of the model are then evaluated and discussed.  相似文献   

4.
Suction Caisson Capacity in Anisotropic, Purely Cohesive Soil   总被引:1,自引:0,他引:1  
This paper presents a plastic limit analysis of the lateral load capacity of suction caissons in an anisotropic, purely cohesive soil assuming conditions of rotational symmetry about the vertical or gravity axis. The formulation utilizes a form of the Hill yield criterion that is modified to allow for different soil strengths in triaxial compression and extension. Using this yield criterion, energy dissipation relationships are formulated for continuous and discontinuous deformation fields. These dissipation relationships are then applied to a postulated caisson failure mechanism comprising a wedge near the free soil surface (mudline), a two-dimensional flow-around failure at depth, and a hemispherical slip surface at the base of the rotating caisson. The plastic limit analysis predictions compared favorably to predictions obtained from finite-element simulations employing a Hill yield criterion. For the range of anisotropic undrained strength properties commonly reported for normally K0-consolidated clays, parametric studies indicate that suction caisson horizontal load capacities predicted using a conventional approach (a von Mises yield surface fitted to the soil simple shear strength) will differ from anisotropic predictions by less than 10%.  相似文献   

5.
Undrained Stability of Braced Excavations in Clay   总被引:2,自引:0,他引:2  
Short-term undrained stability often controls the design of braced excavations in soft clays. This paper summarizes the formulation of numerical limit analyses that compute rigorous upper and lower bounds on the exact stability number and include anisotropic yielding, typical of K0-consolidated clays and bending failure of the wall. Calculations for braced cuts bound the actual failure conditions within ±5%, and highlight limitations of existing basal stability equations. The analyses clarify how wall embedment and bending capacity improve the stability of well braced excavations. Careful selection of mobilized strengths at shear strains in the range 0.6–1.0% are necessary to match the predictions of anisotropic limit analyses with nonlinear finite-element predictions of failure for the embedded walls. Two example applications from recent projects in Boston highlight the practicality of the numerical limit analyses for modeling realistic soil profiles and lateral earth support systems, but also focus attention on the need for careful selection of undrained strength parameters. Credible estimates of stability have also been obtained in reanalyzing a series of case studies reported in literature using isotropic strength parameters derived from field vane or laboratory simple shear tests.  相似文献   

6.
This paper evaluates the feasibility of using artificial neural network (ANN) models for estimating the overconsolidation ratio (OCR) of clays from piezocone penetration tests (PCPT). Three feed-forward, back-propagation ANN models are developed, and trained using actual PCPT records from test sites around the world. The soil deposits range from soft, normally consolidated intact clays to very stiff, heavily overconsolidated fissured clays. ANN model 1 is a general model applicable for both intact and fissured clays. ANN model 2 is suited for intact clays, and ANN model 3 is applicable to fissured clays only. The models are validated using new PCPT data (not used for training), and by comparing model predictions with reference OCR values obtained from oedometer tests. For intact clays, ANN model 2 gives better OCR estimates compared to ANN model 1. For fissured clays, ANN model 3 gives better estimates compared to ANN model 1. Some of the existing interpretation methods are reviewed. Compared to the existing methods, ANN models 2 and 3 give very good estimates of OCR.  相似文献   

7.
This paper examines seven case histories of load tests on piles or drilled shafts under lateral load. Since the current design software to estimate lateral load resistance of deep foundations requires p-y curves. The first approach used was correlative whereby soil parameters determined from in situ tests [standard penetration test (SPT) and cone penetration test (CPT)] were used as input values for standard p-y curves. In the second approach p-y curves were calculated directly from the stress deformation data measured in dilatometer (DMT) and cone pressuremeter tests. The correlative evaluation revealed that, on the average, predictions based upon the SPT were conservative for all loading levels, and using parameters from the CPT best predicted field behavior. Typically, predictions were conservative, except at the maximum load. Since traditionally SPT and CPT correlation-based p-y curves are for “sands” or “clays,” this study suggests that silts, silty sands, and clayey sands should use cohesive p-y curves. For the directly calculated curves, DMT derived p-y curves predict well at low lateral loads, but at higher load levels the predictions become unconservative. p-y curves derived from pressuremeter tests predicted well for both “sands” and “clays” where pore pressures are not anticipated.  相似文献   

8.
The kinematic shield model has been proposed to simulate shield behavior during excavation based on equilibrium condition, taking into account ground displacement around the shield. The model has been validated by the simulation of an earth pressure balanced shield behavior in a straight alignment for a single ground layer. To verify the model performance for shield tunnel excavation at curved alignment in multilayered ground, the slurry shield behavior is simulated in this study using the in situ data, and the immediate ground movements around the shield are computed by three-dimensional FEM employing the enforced displacement, which is obtained from the shield behavior simulation. As a result, it is found that the simulated shield behavior and the computed immediate ground movements around the shield during shield tunneling are in good agreement with the observations. Furthermore, the results reveal that the excavated area including the area generated by copy cutter is a predominant factor affecting the shield behavior, and the ground displacement, at the excavated surface plays an important role in the surrounding ground movements during shield tunneling.  相似文献   

9.
This note presents a method for predicting nonlinear response of pile groups in clays, subjected to vertical loads. The method is based on mobilizable strength design (MSD) concepts, in which the mobilized strength is associated with the shear strains developed in the soil. The suggested procedure is incremental, and requires evaluation of a displacement field. A simple procedure of superposition of pattern functions is suggested for the construction of a complete displacement field. The incremental procedure allows for the variation of the displacement field throughout the loading process, according to principles of minimum energy and compatibility requirements among the piles. Essentially, the procedure allows consideration of a nonlinear continuum between the piles. The pattern functions are an adaptive form of the logarithmic function suggested by Randolph and Wroth in 1979. Under small load levels, when the soil is essentially elastic, the procedure yields values comparable to those from the elastic solution of Randolph and Wroth. At larger strain levels, nonlinear pile group response is simulated based on the soil constitutive models specified by the practitioner. The method is applicable to cases where shaft loading does not induce volume changes in the soil. The method is compared with three dimensional finite difference simulation of undrained loading of pile groups with a nonlinear soil constitutive model. Fair agreement is observed.  相似文献   

10.
Distributed Sensitivity Analysis of Flood Inundation Model Calibration   总被引:8,自引:0,他引:8  
Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.  相似文献   

11.
A powerhouse cavern in the Himalaya has been analyzed using the finite element method under various stages of excavation. A constitutive model based on disturbed state concept has been used to depict the strain softening behavior of the rock mass. The material parameters for the rock mass have been determined from the tests on the intact rock samples from the field. The behavior of the cavern is presented and discussed. The instrumentation used to study the behavior of the cavern during excavation is presented. The predicted and observed behavior of the cavern are compared. It is shown that the predictions are satisfactory.  相似文献   

12.
Two field surveys examined predictions from a model of power usage concerned with how the successful use of power affects powerholders' views of themselves and the target persons. The 1st study, using data from 51 female and 25 male married respondents to a questionnaire, examined conjugal power relations, and the 2nd, employing questionnaire data supplied by 25 middle-class housewives, examined the attitudes of employers of domestic maids. As predicted, in both studies (a) powerholders who used strong means of influence believed that they caused the behavior of the target person and (b) powerholders who believed they caused the target's behavior devalued the target and acted to increase social distance from them. Study 1 also showed that powerholders viewed themselves more favorably than the target person. (20 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
In this paper a theoretical study of the behavior of structured soils, including both clays and sands, is presented. A new model, which is referred to as the “Sydney soil model,” is formulated within the framework of critical state soil mechanics. In the proposed model, the mechanical behavior of soil is divided into two parts, that at a reference state and that attributed to the influence of soil structure. The reference state behavior is formulated according to the soil properties at the critical state of deformation, based on the concept of plastic volumetric hardening. The effects of structure are captured in the model by incorporation of the additional voids ratio that arises owing to the presence of soil structure. The formulation is generalized to include both isotropic compression and general shearing. In part?I of this paper, a new theoretical framework for modeling structured soil behavior and the formulation of the proposed Sydney soil model are introduced. In part?II of this paper, the Sydney soil model is employed to simulate the behavior of clays and sands, including calcareous clays and sands subjected to both drained and undrained shearing, and the performance of the model is evaluated.  相似文献   

14.
The influence of the natural (or artificially induced) structure of a geomaterial on its compression behavior is investigated. An approach for modeling this influence for various structured geomaterials is proposed by using the disturbed state concept. An isotropic compression model is formulated on three basic assumptions. A special version of the proposed model is also described for situations where the compression is one-dimensional. The proposed compression model is used to simulate the behavior of a variety of structured geomaterials such as clays, sands, calcareous soils, clay-shale, soft rock, unsaturated soils, and soils artificially treated by adding chemical agents or mechanical reinforcement, and the model is evaluated on the basis of these simulations. A general discussion on the influence of the structure of geomaterials on their mechanical properties is also presented.  相似文献   

15.
Two field studies tested and extended the group engagement model (Tyler & Blader, 2000, Tyler & Blader, 2003) by examining the model with regard to employee extrarole behavior. Consistent with the group engagement model's predictions, results of these studies indicate that the social identities employees form around their work groups and their organizations are strongly related to whether employees engage in extrarole behaviors. Moreover, the studies demonstrated that social identity explains the impact of other factors that have previously been linked to extrarole behavior. In particular, the findings indicate that social identity mediates the effect of procedural justice judgments and economic outcomes on supervisor ratings of extrarole behavior. Overall, these studies provide compelling indication that social identity is an important determinant of behavior within work organizations and provide strong support for the application of the group engagement model in organizational settings. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Patch-clamp techniques were used to characterize the channel activity of mitochondrial inner membranes of two human osteosarcoma cell lines: a mitochondrial genome-deficient (rho0) line and its corresponding parental (rho+) line. Previously, two high conductance channels, mitochondrial Centum picoSiemen (mCS) and multiple conductance channels (MCC), were detected in murine mitochondria. While MCC was assigned to the protein import in yeast mitochondria, the role of mCS is unknown. This study demonstrates that mCs and MCC activities from mouse mitochondria are indistinguishable from those of human mitochondria. The channel activities and their functional expression levels are not altered in cells lacking mtDNA. Hence, rho0 cells may provide a model system for elucidating the role of mitochondrial channels in disease processes and apoptosis.  相似文献   

17.
The sliding-block model is often used for the prediction of permanent coseismic displacements of natural slopes and earth structures. This model assumes motion in an inclined plane but does not consider the decrease in inclination of the sliding soil mass as a result of its downward motion, which is the usual condition in the field. The paper studies the above effect and proposes an empirical equation correcting the predictions of the sliding-block model. The investigation is performed by using a recently developed multiblock model. The equation correcting the predictions of the sliding-block model depends on the slip length, the difference in inclinations of the upper and lower part of the slip surface, the seismic displacement predicted by the sliding-block model and the maximum value of the applied horizontal acceleration.  相似文献   

18.
This paper presents the development of an elastic model for particulate materials based on micromechanics considerations. A particulate material is considered as an assembly of particles. The stress–strain relationship for an assembly can be determined by integrating the behavior of the interparticle contacts in all orientations and using a static hypothesis which relates the average stress of the granular assembly to a mean field of particle contact forces. Hypothesizing a Hertz–Mindlin law for the particle contacts leads to an elastic nonlinear behavior of the particulate material, we were able to determine the elastic constants of the granular assembly based on the properties of the particle contacts. The numerical predictions, compared to the results obtained during experimental studies on different granular materials, show that the model is capable of taking into account both the influence of the inherent anisotropy and the influence of the stress-induced anisotropy for different stress conditions.  相似文献   

19.
Ground movements induced by shallow tunnels affect the safety of nearby underground and aboveground structures. Therefore, the reliable prediction of these movements is important. A transparent soil model is used to investigate not only the surface settlement profile induced by shield tunneling, but also the distribution of soil deformation within the soil mass near the tunnel. The observed surface settlements are consistent with the normal probability curve commonly used for predicting settlement, with only the inflection points or trough width parameters somewhat different. The measured data are consistent with field measurements in that the trough width parameter is independent of the volume loss and linearly proportional to the tunnel depth. An analysis of the displacement field inside the transparent soil models indicates that the subsurface settlement trough at different depths can be approximated by a normal probability curve; and the horizontal displacement can be expressed by the trough width parameter and the volume loss, at the point at which maximum horizontal displacement occurs at the point of inflection. Additionally, the measurements indicate that subsurface ground movements can be in excess of the observed surface settlement, which can adversely affect underground utilities.  相似文献   

20.
This paper presents the results and analysis of a laboratory investigation of the behavior of lightly overconsolidated compressible Chicago glacial clays over a wide strain range. Each specimen was trimmed from high quality block samples taken from an excavation in Evanston, Illinois. Specimens were instrumented with three sets of bender elements and local LVDTs. After K0 consolidation to the in situ vertical effective stress of the block, drained stress probe tests were conducted. Results of bender elements tests obtained prior to stress probing show that compressible Chicago glacial clay initially is cross anisotropic. Propagation velocities measured by bender elements in axial direction after K0 reconsolidation and drained creep agrees well with the in situ shear wave velocity measured by seismic cone penetration tests. Results of drained stress probe tests are analyzed in terms of shear, volumetric and coupled stiffness, stiffness degradation, and direction of loading. The significant variability of shear, bulk and cross-coupling response depending on stress path direction and strain level provide experimental evidence that the Chicago clays are incrementally nonlinear at the strain levels investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号