首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Calcined titanate nanotubes were synthesized with hydrothermal treatment of the commercial TiO2 (Degussa P25) followed by calcination. The morphology and structures of as-prepared samples were investigated by transmission electron microscopy, X-ray diffraction and N2 adsorption/desorption. The samples exhibited a tubular structure and a high surface area of 157.9 m2/g. The adsorption of methylene blue onto calcined titanate nanotubes was studied. The adsorption kinetics was evaluated by the pseudo-first-order, pseudo-second-order and Weber's intraparticle diffusion model. The pseudo-second-order model was the best to describe the adsorption kinetics, and intraparticle diffusion was not the rate-limiting step. The equilibrium adsorption data were analyzed with three isotherm models (Langmuir model, Freundlich model and Temkin model). The best agreement was achieved by the Langmuir isotherm with correlation coefficient of 0.993, corresponding to maximum adsorption capacity of 133.33 mg/g. The adsorption mechanism was primarily attributed to chemical sorption involving the formation of methylene blue-calcined titanate nanotubes nanocomposite, associated with electrostatic attraction in the initial bulk diffusion.  相似文献   

2.
Resin was modified with ferrocene (Fc) to enhance removal of Methylene Blue (MB) and Cu2+ from simulated wastewater. The FTIR, N2‐BET, and X‐ray fluorescence analysis confirmed that Fc was successfully grafted onto the surface of resin. The adsorption capacity of Fc modified cation exchange resin (FMCER) was calculated to be 392.16 mg/g Cu2+ and 10.01 mg/g MB. Both processes were spontaneous and exothermic, best described by Langmuir equation. Pseudo‐first‐order kinetic model satisfied the adsorption of MB, while the intraparticle‐diffusion model fitted the kinetics of Cu2+ adsorption best. The result revealed a multilayer adsorption of Cu2+ on FMCER, and the kinetics maybe controlled by intraparticle diffusion, film diffusion, and competition force. The adsorption of MB and Cu2+ on FMCER were physicosorptive, with activation energies of 2.09 and 1.27 kJ/mol. pH 2–7 and 4–5 are optimum for the removal of MB and Cu2+, and pH 4 is optimal for the simultaneous removal of MB and Cu2+. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41029.  相似文献   

3.
Mingfei Zhao 《Desalination》2009,249(1):331-203
The modified expanded graphite (MEG) powder was used as a porous adsorbent for the removal of the cationic dye, methylene blue (MB), from aqueous solutions. The dye adsorption experiments were carried out with the bath procedure. Experimental results showed that the basic pH, increasing initial dye concentration and high temperature favored the adsorption. The dye adsorption equilibrium was attained rapidly after 5 min of contact time. Experimental data related to the adsorption of MB on the MEG under different conditions were applied to the pseudo-first-order equation, the pseudo-second-order equation and the intraparticle diffusion equation, and the rate constants of first-order adsorption (k1), the rate constants of second-order adsorption (k2) and intraparticle diffusion rate constants (kint) were calculated, respectively. The experimental data fitted very well in the pseudo-second-order kinetic model. The thermodynamic parameters of activation such as Gibbs free energy, enthalpy, and entropy were also evaluated. The results indicated that the MEG powder could be employed as an efficient adsorbent for the removal of textile dyes from effluents.  相似文献   

4.
The present study reports the preparation of an activated carbon produced from buriti shells (ACb) using ZnCl2 as activating agent and its ability to remove methylene blue dye (MB) from aqueous solutions. The obtained ACb was characterized by N2 adsorption–desorption isotherms, SEM and FT-IR. The results show that ACb presents microporous features with BET surface area (SBET) of 843 m2 g−1 and functional groups common in carbonaceous materials. Adsorption studies were carried out and experimental data were fitted to three isotherm models (Langmuir, Freundlich, and Redlich–Peterson) and four kinetic models (pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion). The isotherm model which best fitted to experimental data was Redlich–Peterson. However, the g parameter of this model indicated that the adsorption of MB onto ACb occurs according to the mechanism proposed by Langmuir, which showed maximum monolayer adsorption capacity of 274.62 mg g−1. Kinetic studies demonstrated that the Elovich model is suitable to describe the experimental data. Moreover, it was found that the intraparticle diffusion is the limiting step of adsorption process.  相似文献   

5.
The adsorption kinetics of erythrosine B and indigo carmine on chitosan films was studied by a diffusional mass transfer model. The experimental curves were obtained in batch system under different conditions of stirring rate (80–200 rpm) and initial dye concentration (20–100 mg L−1). For the model development, external mass transfer and intraparticle diffusion steps were considered and the specific simplifications were based on the system characteristics. The proposed diffusional mass transfer model agreed very well with the experimental curves, indicating that the surface diffusion was the rate limiting step. The external mass transfer coefficient (kf) was dependent of the operating conditions and ranged from 1.32 × 10−4 to 2.17 × 10−4 m s−1. The values of surface diffusion coefficient (Ds) increased with the initial dye concentration and were in the range from 0.41 × 10−14 to 22.90 × 10−14 m2 s−1. The Biot number ranged from 17.0 to 478.5, confirming that the intraparticle diffusion due to surface diffusion was the rate limiting step in the adsorption of erythrosine B and indigo carmine on chitosan films.  相似文献   

6.
The modified zeolite A was prepared by a two‐step crystallization method to remove scale‐forming cations from water and geothermal water. The adsorption kinetics, mechanism and thermodynamics were studied. The calcium ion adsorption capacity of the modified zeolite A was 129.3 mg/g (1 mg/g = 10?3 kg/kg) at 298 K. The adsorption rate was fitted well with pseudo‐second‐order rate model. The adsorption process was controlled by film diffusion at the calcium ion concentration less than 250 mg/L (1 mg/L = 10?3 kg/m3), and it was controlled by intraparticle diffusion at the concentration larger than 250 mg/L. The calculated mass‐transfer coefficient ranged from 2.23 × 10?5 to 2.80 × 10?4cm/s (1 cm/s = 10?2m/s). Dubinin–Astakhov isotherm model could appropriately describe the adsorption thermodynamic properties when combined with Langmuir model. The adsorption process included not only ion exchange but also complexation between calcium and hydroxyl ions. The adsorption was spontaneous and endothermal. The high adsorption capacity indicates that the modified zeolite A is a suitable adsorption material for scale removal from aqueous solution. © 2014 American Institute of Chemical Engineers AIChE J, 61: 640–654, 2015  相似文献   

7.
The kinetic and thermodynamic behaviors of cationic dye adsorption onto citric acid esterifying wheat straw (EWS) from aqueous solution were investigated. Two cationic dyes, methylene blue (MB) and crystal violet (CV) were selected as adsorbates. The kinetic and thermodynamic parameters of dye adsorption were examined with a batch system by changing various experimental factors (e.g. initial pH, EWS dosage, dye concentration, contact time, temperature). The MB and CV removal ratios came up to the maximum value beyond pH 4. The 2.0 g/L or up of EWS could almost completely remove MB and CV from 250 mg/L of dye solution. The adsorption percentages of MB and CV kept above 95% over a range from 50 to 350 mg/L of dye concentration when 2.0 g/L of EWS was used. The isothermal data followed the Langmuir model. The adsorption processes could be described by the pseudosecond-order kinetic model. The dual linear plots of intraparticle diffusion indicated that two intraparticle diffusion steps occurred in the dye adsorption processes. The thermodynamic study indicated that the adsorptions of dyes were spontaneous and endothermic. High temperatures favored the adsorption processes.  相似文献   

8.
ABSTRACT

In this study, the main objective is the elimination of Basic Red 46 dye by coupling two processes, adsorption on activated clay followed by photocatalysis over ZnO as photocatalyst. The adsorption was investigated under different conditions of pH, adsorbent dose, dye concentrations, and temperature. The best adsorption yield occurs at neutral pH ~ 7 within 60 min with an uptake percentage of 97% for a concentration of 25 mg/L and a dose of 0.5 g/L. The results at equilibrium were successfully described by the Langmuir model with an adsorption capacity of 175 mg/g. To investigate the mechanism of dye adsorption characteristic, the adsorption constants were determined using pseudo first order, pseudo second-order and intraparticle diffusion model. It was found that the Basic Red 46 dye adsorption is well described by the pseudo second-order kinetic. The second part of this work was dedicated to the photodegradation onto ZnO under solar irradiation of the residual BR 46 concentration, remained after adsorption. For the remaining concentrations, the removal yields reach 100% under.  相似文献   

9.
An innovative spherical poly(vinyl alcohol)(PVA)/peat/clay porous composite bead was prepared and shown to be suitable for use as an adsorbent. The mass transport process for the adsorption of metal ions onto this composite bead in an aqueous system was investigated. In the external mass transport process, the diffusion coefficient (D1) of Cu+2 and Zn+2 ions increased with increasing initial metal ion concentration and the increasing effect was more pronounced in the initial metal ion concentrations range of 18?×?10-3 to 22?×?10-3?M. The diffusion rate of Zn+2 ions was faster than that of Cu+2 ions. In the intraparticle diffusion process, the diffusion coefficient (D2) decreased with increasing initial metal ion concentration in the initial concentration range of 1?×?10-3 to 4?×?10-3?M, and the value of D2 maintained an almost constant value in the initial concentration range of 8?×?10-3 to 22?×?10-3?M. The rate of ion diffusion within the adsorbent for Cu+2 ions was faster than that for Zn+2 ions. The adsorption mechanism was controlled by the intraparticle diffusion process. The adsorption followed the Langmuir adsorption isotherm model. The maximum amount of adsorbed metal ions for Cu+2 and Zn+2 ions were 22.57 and 13.62?mg/g composite bead, respectively.  相似文献   

10.
This study aimed at preparing and optimizing an activated carbon (OAC) obtained from dry okra wastes by chemical activation with zinc chloride. Also, Rhodamine B removal performance from aqueous solution was analyzed by using this optimized activated carbon. The characterization of the resultant activated carbon, with a high surface area of 1044?m2/g, was carried out using thermogravimetric analysis, Brunauer–Emmett–Teller model, t-plot, N2 adsorption/desorption isotherms, density functional theory, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and the point of zero charge. Furthermore, the effects of operating conditions (contact time, initial concentration, adsorbent dosage, temperature, and pH) on Rhodamine B adsorption onto OAC were investigated. Langmuir model was determined to be the best adsorption process, and the maximum adsorption capacity was calculated to be 321.50?mg/g at 25°C. Also, the intraparticle diffusion and boundary layer diffusion were involved in RhB adsorption onto OAC. Moreover, OAC adsorption curves of Rhodamine B followed pseudo second-order model. At 25°C, Gibbs free energy, enthalpy, and entropy obtained from thermodynamic studies were determined to be ?27.87?kJ/mol, 13.03?kJ/mol, and 0.15?kJ/mol K, respectively. These thermodynamic values revealed that Rhodamine B adsorption onto OAC was feasible, endothermic, physical, and spontaneous.  相似文献   

11.
《分离科学与技术》2012,47(14):3712-3731
Abstract

The removal of basic dye crystal violet by low-cost biosorbents was investigated in this study using a batch experimental system. The adsorption of crystal violet onto various adsorbents was solution pH-dependent and the maximum removal occurred at basic pH 10.0. The kinetic experimental data were analyzed using pseudo-first-order and pseudo-second-order equations to examine the adsorption mechanism and the intraparticle diffusion model to identify the potential rate controlling step. These results suggested that the adsorption of crystal violet onto various adsorbents was best represented by the pseudo-second-order equation. The suitability of the Langmuir and Freundich adsorption isotherms to the equilibrium data was also investigated at various temperatures for all four sorbents and the adsorption isotherms exhibited Freundlich behavior. The Freundlich constant Kf was 1.55 for alligator weed, 2.33 for Laminaria japonica, 9.59 for rice bran and 5.38 (mg/g)/(mg/L)1/n for wheat bran, respectively at adsorbent concentration 5 g/L, pH 10.0 and 20°C. The thermodynamic parameters (ΔH, ΔG, and ΔS) were calculated and the results showed that the adsorption process for various adsorbents was spontaneous, endothermic, with an increased randomness, respectively. The particle size and the reaction temperature exhibited an insignificant impact on the adsorption equilibrium of crystal violet. The adsorbents investigated could serve as low-cost adsorbents for removing the crystal violet from aqueous solution.  相似文献   

12.
In this research, activated carbon (AC) simply was prepared from a local, abundant tree in south of Iran. The AC with low cost and toxicity is a good candidate for bromophenol blue (BPB) removal from aqueous media. The AC with nano scale pore diameter is applicable for this dye removal following optimization of the influence of various parameters including contact time, pH, initial dye concentration and amount of adsorbent. Subsequently, experimental data was analyzed by four kinetic models including pseudo first and second-order, Elovich and the intraparticle diffusion equations and subsequently their respective parameters such as rate constants, equilibrium adsorption capacities and correlation coefficients was investigated and based on well known criterion their applicability was judged. The result shows that adsorption of BPB onto proposed adsorbent at all conditions such as versatile adsorbent dosages and initial BPB concentrations sufficiently described by the combination of the pseudo second-order equation and interparticle diffusion model. It was found that equilibrium rate of the BPB adsorption at various adsorbent dosage well fitted by Langmuir. Investigation of experimental result by two approaches (multiple linear regressions (MLR) and random forest (RF)) models show that RF is a powerful tool for prediction of BPB adsorption by activated carbon obtained from Astragalus bisulcatus tree. The optimal tuning parameters for RF model are obtained based on the ntree = 100, mtry = 2. For the training data set, the MSE values of 0.0006 and the coefficient of determination (R2) values of 0.9895 for RF model and the MSE value of 0.0104 and the R2 value of 0.823 for MLR model are obtained.  相似文献   

13.
In this work, a composite from α‐cellulose coated with conducting polypyrrole by in situ polymerization using potassium persulfate as oxidant was obtained. The composite was characterized by fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry, UV/Vis spectroscopy, and scanning electron microscopy (SEM) analysis showed homogeneous coating of α‐cellulose with polypyrrole (PPy) to produce a composite with a conductivity of 3.5 × 10−5 S/m. Batch aqueous adsorption experiments of the reactive red 120 (RR120) dye onto the synthesized material were conducted. The results showed that this composite is an efficient adsorbent for RR120 dye removal. For the adsorption experiments set to an initial pH of 3.9, the adsorption capacity was 15.6 mg of dye/g of composite for an equilibrium concentration (in the liquid) of RR120 dye equal to 1,000 mg/L, whereas a value of 96.1 mg of dye/g of composite was obtained when the solution pH was set to 2.0 for the same equilibrium concentration. When performing adsorption experiments using pure α‐cellulose, dye adsorption was insignificant at any pH value. Adsorption isotherm for RR120 was described by a typical Freundlich model. The transient adsorption of RR120 on the synthesized composite was described by a general three‐resistance model that includes the transport on the film that surrounds the composite particles, diffusion inside the particles, and adsorption on the surface of the particles. A fitting of the uptake curves was performed allowing the estimation of values for the effective diffusivity, D0, and the adsorption rate coefficient, k1. For the adsorption experiments with an initial pH value set to 3.9, D0 was estimated as 1.05 × 10−10 m2/s, whereas k1 was 1.65 × 10−4 Ln/g mgn − 1 s; the corresponding values of k1 at pH = 2 and 9.0 were 3.18 × 10−4 and 5.16 × 10−5, respectively. POLYM. COMPOS., 36:312–321, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
The bamboo charcoal modified with Cu2+ and 3-aminopropyl trimethoxy silane (BC-Cu/Si-NH2) was synthesized and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and surface acid–base potentiometric titration. The adsorption for acid fuchsin (AF) dyes onto BC-Cu/Si-NH2 was investigated. Moreover, response surface methodology was performed to optimize the process parameters including pH, initial dye concentration, adsorbent dosage, and temperature. The results presented that the adsorption process was mainly influenced by initial AF concentration and adsorbent dosage. Isotherm studies revealed that the adsorption data fitted well with the Sips model and Dubinin–Radushkevich (D–R) model, which indicated the monolayer, homogeneous, and physical nature of the adsorption process. The maximum adsorption capacity calculated from D–R model could approach approximately to 14.91 mg g−1 at 40 °C, and the maximum adsorption capacity of Sips reached to 10.77 mg g−1 at 40 °C. The kinetic experimental data matched well with Spahn and Schlunder model as well as pseudo-second-order model. In addition, intraparticle diffusion was not the only rate-controlling step of adsorption process. Thermodynamic parameters revealed the feasibility, spontaneity, and endothermic nature of adsorption. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47728.  相似文献   

15.
A weak acid acrylic resin was used as an adsorbent for the investigation of Basic Blue 3 (BB3) adsorption kinetics, isotherms, and thermodynamic parameters. Batch adsorption studies were carried out to evaluate the effect of pH, contact time, initial concentration (28–100 mg/g), adsorbent dose (0.05–0.3 g), and temperature (290–323 K) on the removal of BB3. The adsorption equilibrium data were analyzed by the Langmuir, Temkin, and Freundlich isotherm models, with the best fitting being the first one. The adsorption capacity (Qo) increased with increasing initial dye concentration, adsorbent dose, and temperature; the highest maximum Qo (59.53 mg/g) was obtained at 323 K. Pseudo‐first‐order and pseudo‐second‐order kinetic models and intraparticle diffusion models were used to analyze the kinetic data; good agreement between the experimental and calculated amounts of dye adsorbed at equilibrium were obtained for the pseudo‐second‐order kinetic models for the entire investigated concentrations domain. Various thermodynamic parameters, such as standard enthalpy of adsorption (ΔHo = 88.817 kJ/mol), standard entropy of adsorption (ΔSo = 0.307 kJ mol?1 K?1), and Gibbs free energy (ΔGo < 0, for all temperatures investigated), were evaluated and revealed that the adsorption process was endothermic and favorable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
《分离科学与技术》2012,47(16):2510-2516
Zn2SnO4 powder was prepared by hydrothermal process at 200°C for 12 h. The material was characterized by X-ray-diffraction and surface area. The synthesized sample presented a pure phase and a surface area of 48.8 m2 · g?1. It was used as adsorbent to remove the Reactive Red 141 that is a azo textile dye. The adsorption kinetics of the textile dye on Zn2SnO4 followed the pseudo-second-order model. The adsorption process was found to be controlled by both external mass transfer and intraparticle diffusion. The equilibrium data were in good agreement with both Langmuir and Freundlich isotherms. Thermodynamic parameters were calculated, and the results revealed that the adsorption process is endothermic in nature, with weak forces of the Van der Walls acting.  相似文献   

17.
The removal of Al (III) ions from aqueous solution by locally abundantly low-cost fresh macrophyte, alligator weed, was examined in batch system. Effect of initial solution pH on Al (III) adsorption was investigated and the Al (III) species present in aqueous solution were identified. The main functional groups of the alligator weed were characterized by Fourier transform infrared spectrometer (FT-IR). The equilibrium data fitted to Freundlich and Langmuir isotherms satisfactorily. The pseudo-second-order equation fitted the kinetic data very well. The intraparticle diffusion played an important role in the Al (III) sorption process. Al (III) ions were favorably adsorbed by alligator weed and the values of Kf and 1/n (Freundlich constant) at 25 °C and pH 3.5 were found as 1.9963 (mg/g)/(mg/L)1/n and 0.7875, respectively, which are comparable to those of granular activated carbon (2.20 (mg/g)/(mg/L)1/n and 0.8695, respectively).  相似文献   

18.
Activated carbons (ACs) were prepared from papaya seeds with different dry weight impregnation ratios of zinc chloride (ZnCl2) to papaya seeds by using a two-stage self-generated atmosphere method. The papaya seeds were first semi-carbonized in a muffle furnace at 300 °C for 1 h and then impregnated with ZnCl2 before activation at 500 °C for 2 h. Several physical and chemical characteristics such as moisture, ash, pH, functional groups, morphological structure and porosity of prepared ACs were studied and presented here. AC2, with the impregnation ration of 1: 2 (papaya seeds: ZnCl2), yielded a product that had the highest adsorption capacity, 91.75%, achieved after 180min contact time. The maximum Brunauer, Emmett and Teller (BET) surface area of AC2 was 546m2/g. Adsorption studies indicated that AC2 complied well with the Langmuir isotherm (q m =39.683mg g?1) and the pseudo-second-order (q e =29.36mg g?1). This indicated that chemisorption was the primary adsorption method for AC2. The intraparticle diffusion model proved that the mechanism of adsorption was separated into two stages: the instantaneous stage and the gradual adsorption stage. Overall, this work demonstrated the suitability of using papaya seeds as a precursor to manufacture activated carbon.  相似文献   

19.
This work introduces a biochar as novel adsorbent prepared from the dew melon peel by pyrolysis method, and demonstrates its potential for eliminating Cr(VI) from simulated and actual wastewaters. The dew melon peel biochar (DPB) was characterized by several techniques and methodologies such as, BET, SEM, FTIR, Boehm titration, ultimate analysis, and pHzpc. DPB is a microporous material with the BET specific surface area of 196 m2/g. The effects of different parameters including pH, amount of adsorbent, Cr(VI) concentration, and mixing time on the removal of Cr(VI) from wastewater were studied. Maximum adsorption (98.6%) was observed at pH 6 and 100 mg/L metal concentration. The equilibrium adsorption was analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Kinetic data were evaluated by pseudo-first order, pseudo-second order, intraparticle diffusion, film diffusion (Boyd), Elovich, and Avrami models. The kinetic data were best fitted to the pseudo-second order model. The Langmuir isotherm model gives the better correlation to predict the adsorption equilibrium, with a maximum adsorption capacity of 198.7 mg/g. The thermodynamic parameters showed that the adsorption of Cr(VI) was endothermic and spontaneous. Competition between the co-existing ions of Cl?, NO 3 ? , SO 4 2? , PO 4 3? , and HCO 3 ? on the adsorption process was studied. The efficacy of DPB was successfully examined by analyzing the removal of Cr(VI) from two industrial wastewaters. The results indicate that DPB is promising as an effective and economical adsorbent for Cr(VI) ions removal and could be repeatedly used with no significant loss of adsorption efficiency.  相似文献   

20.
A composite based on coffee grounds waste (CGW) coated with the semi-conducting polypyrrole (PPy) was prepared by pyrrole polymerization using potassium persulfate as oxidant. The composite was characterized by FTIR spectroscopy, cyclic voltammetry, UV/vis spectroscopy, scanning electron microscopy (SEM) and TGA analysis. SEM analysis showed homogeneous coating of coffee fibers with spherical nanoparticles of PPy with diameters in the range of 200–300 nm. Aqueous adsorption experiments of rhodamine B dye (RhB) onto the as-prepared composite were performed. The effect of pH and initial dye concentration (C0) on the adsorption behavior was studied. The results showed that this material was an efficient adsorbent of RhB dye at alkaline pH. The adsorption experiments were set at C0 = 200 mg/L and initial pH values of 2.0, 3.25 and 9.0, the adsorption capacities were 7.22, 13.8, and 19.0 mg of dye/g of the composite, respectively. Nonetheless, when pH was maintained at 9.0 throughout adsorption time, the adsorption capacity increased to 32 mg of dye/g of the composite. When performing adsorption tests using pure CGW, dye adsorption was insignificant at any pH level. Adsorption isotherm for RhB at controlled pH of 9.0 was well described by the Redlich–Peterson model and by the typical Langmuir adsorption model with a theoretical maximum adsorption capacity (qmax) of 50.59 mg of dye/g of composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号