首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Catalytic effects of iron salts on phenol degradation induced by glow discharge plasma (GDP) were examined. It was found that ferric ions showed much better catalytic effect than that of ferrous ions. The reason was that GDP could produce hydroxyl radicals and hydrogen peroxide simultaneously; the hydroxyl radicals reacted with phenol to produce dihydroxycyclohexadienyl radicals which reduced the ferric ions to ferrous ions and the newly formed ferrous ions catalyzed the hydrogen peroxide to produce more hydroxyl radicals. Without iron salts, TOC of the solution gradually decreased with treatment time while COD of the solution increased due to the accumulation of the hydrogen peroxide. Without iron salts, catechol, hydroquinone, and hydroxylhydroquinone were major by-products. However, large amounts of catechol, hydroquinone and benzoquinone yielded in the presence of iron salts. The present study presents some new information related to Fenton's reaction.  相似文献   

2.
The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10(-7) mol L(-1)s(-1), which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased.  相似文献   

3.
The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC–MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC–MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.  相似文献   

4.
An electrohydraulic discharge system of salt-resistance has been developed and analyzed for p-chlorophenol (4-CP) degradation. The discharge electrodes used in the system was consisted of four steel acupuncture needles (? 0.25 mm) which were covered by capillaries through which gas was supplied to the discharge region, forming gas bubbles. In the comparing system, the aeration capillaries were encapsulated and the bubbling was cancelled. It was confirmed that introducing gas into the discharge zone could reduce the affection of salt content in the pulsed high-voltage electrohydraulic discharge system. In the non-bubbling system, the formation of active species and 4-CP degradation was sharply influenced by increasing salt content. The formation rate of hydroxyl radical and hydrogen peroxide was decreased almost to zero and the 4-CP was hardly removed as the NaCl concentration was higher than 5.0 x 10(-3) mol L(-1). But in the developed system, the formation rates were changed little with increasing the salt concentration. Increasing the NaCl concentration high to 0.1 mol L(-1), the hydroxyl radical formation rate was 4.43 x 10(-7) mol L(-1)s(-1), and the removal rate of 4-CP was still high, where more than 90% was removed in 18 min.  相似文献   

5.
采用化学沉淀法,以硫酸亚铁为铁源,十二烷基硫酸钠(SDS)为表面活性剂,合成了α-三氧化二铁(α-Fe2O3)纳米颗粒。研究了各因素对Fe2+转化率的影响,利用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和透射电子显微镜(TEM)对样品进行了分析。结果表明:对于浓度为0.9mol/L的亚铁溶液,当过氧化氢用量为15mL,反应15min时,Fe2+的转化率最大,为99.1%。  相似文献   

6.
In the present work, a synergistic system of pulsed corona discharge combined with TiO(2) photocatalysis has been developed to investigate the degradation rate of phenol solutions by varying experimental conditions of gas bubbling varieties (air, O(2), and Ar), solution pH values, and radical scavenger additives. The hydrogen peroxide (H(2)O(2)) concentration, which indicated the amount of hydroxyl radicals (OH) in the reaction system under different conditions of gas bubbling varieties and scavenger species, was also reviewed. The obtained results revealed that degradation efficiency of phenol could be increased by the addition of TiO(2) in pulsed discharge system. The gas of Ar and O(2) bubbled into the reaction system was found to be favorable for phenol degradation and H(2)O(2) formation. Both in air bubbling and in O(2) bubbling reaction system, the higher degradation rate of phenol occurred in the case of acidic solution. The addition of sodium carbonate or n-butanol in the solution displayed a negative effect for phenol removal, while the H(2)O(2) concentration showed different changing trend by adding different radical scavengers. The most effective degradation of the three main intermediates of catechol, 1,4-hydroquinone, and 1,4-benzoquinone formed during phenol decomposition existed in the synergistic system of pulsed corona discharge and TiO(2) photocatalysis bubbled with O(2).  相似文献   

7.
Aqueous oxidation treatment of COD and color in landfill leachate with the combination of hydrogen peroxide and ferrous ion, Fenton reagent, has been studied. The effect of variables such as concentration of both reactants and pH has been investigated. Best concentrations seem to be 0.6 and 3.0 mol/L for H2O2 and Fe2+ ion, respectively. The other important variable, pH of landfill leachate should be near 7. From the experimental results can be known the determined process was the generation of hydroxyl radicals involving in advanced oxidation. Oxidation rates are even higher than those of other advanced oxidation systems involving ozone, UV radiation, and hydrogen peroxide.  相似文献   

8.
In this study, batch experiments were conducted to evaluate the feasibility of petroleum-hydrocarbon contaminated soil remediation using persulfate oxidation. Various controlling factors including different persulfate and ferrous ion concentrations, different oxidants (persulfate, hydrogen peroxide, and permanganate), and different contaminants (diesel and fuel oil) were considered. Results show that persulfate oxidation is capable of treating diesel and fuel oil contaminated soil. Higher persulfate and ferrous ion concentrations resulted in higher diesel degrading rates within the applied persulfate/ferrous ion molar ratios. A two-stage diesel degradation was observed in the batch experiments. In addition, treatment of diesel-contaminated soil using in situ metal mineral activation under ambient temperature (e.g., 25°C) may be a feasible option for site remediation. Results also reveal that persulfate anions could persist in the system for more than five months. Thus, sequential injections of ferrous ion to generate sulfate free radicals might be a feasible way to enhance contaminant oxidation. Diesel oxidation efficiency and rates by the three oxidants followed the sequence of hydrogen peroxide>permanganate>persulfate in the limited timeframes. Results of this study indicate that the application of persulfate oxidation is a feasible method to treat soil contaminated by diesel and fuel oil.  相似文献   

9.
Hydrogen peroxide decomposition in model subsurface systems.   总被引:5,自引:0,他引:5  
Rates of hydrogen peroxide decomposition, hydroxyl radical production, and oxygen evolution were investigated in silica sand-goethite slurries using unstabilized and stabilized hydrogen peroxide formulations. The goethite-catalyzed decomposition of unstabilized hydrogen peroxide formulations resulted in more rapid hydrogen peroxide loss and oxygen evolution relative to systems containing a highly stabilized hydrogen peroxide formulation. Systems at neutral pH and those containing higher goethite concentrations were characterized by higher rates of hydrogen peroxide decomposition and by more oxygen evolution. The stabilized hydrogen peroxide formulation showed greater hydroxyl radical production relative to the unstabilized formulations. Furthermore, hydroxyl radical production rates were greater at neutral pH than at the acidic pH regimes. The results suggest that when stabilized hydrogen peroxide is injected into the subsurface during in situ bioremediation, naturally occurring minerals such as goethite may initiate Fenton-like reactions. While these reactions may prove to be toxic to microorganisms, they have the potential to chemically oxidize contaminants in soils and groundwater.  相似文献   

10.
过氧化氢氧化淀粉胶黏剂的研制   总被引:2,自引:2,他引:0  
介绍了过氧化氢氧化淀粉胶黏剂的制备工艺,并着重分析了氢氧化钠、硫酸亚铁、过氧化氢、蒙脱石的添加质量对H2O2氧化淀粉胶黏剂性能的影响。实验结果表明,当过氧化氢氧化淀粉胶黏剂中各组分添加质量的配比为m(淀粉):m(氢氧化钠):m(水):m(过氧化氢):m(硫酸亚铁):m(蒙脱石)=100:12:600:4.4:2.4:12时,所制得的氧化淀粉胶黏剂各项性能指标较好,是一种较理想的淀粉胶黏剂。  相似文献   

11.
Fenton's reagent is the result of reaction between hydrogen peroxide (H(2)O(2)) and ferrous iron (Fe(2+)), producing the hydroxyl radical (-*OH). The hydroxyl radical is a strong oxidant capable of oxidizing various organic compounds. The mechanism of oxidizing trichloroethylene (TCE) in groundwater and soil slurries with Fenton's reagent and the feasibility of injecting Fenton's reagent into a sandy aquifer were examined with bench-scale soil column and batch experiment studies. Under batch experimental conditions and low pH values ( approximately 3), Fenton's reagent was able to oxidize 93-100% (by weight) of dissolved TCE in groundwater and 98-102% (by weight) of TCE in soil slurries. Hydrogen peroxide decomposed rapidly in the test soil medium in both batch and column experiments. Due to competition between H(2)O(2) and TCE for hydroxyl radicals in the aqueous solutions and soil slurries, the presence of TCE significantly decreased the degradation rate of H(2)O(2) and was preferentially degraded by hydroxyl radicals. In the batch experiments, Fenton's reagent was able to completely dechlorinate the aqueous-phase TCE with and without the presence of soil and no VOC intermediates or by-products were found in the oxidation process. In the soil column experiments, it was found that application of high concentrations of H(2)O(2) with addition of no Fe(2+) generated large quantities of gas in a short period of time, sparging about 70% of the dissolved TCE into the gaseous phase with little or no detectable oxidation taking place. Fenton's reagent completely oxidized the dissolved phase TCE in the soil column experiment when TCE and Fenton's regent were simultaneously fed into the column. The results of this study showed that the feasibility of injecting Fenton's reagent or H(2)O(2) as a Fenton-type oxidant into the subsurface is highly dependent on the soil oxidant demand (SOD), presence of sufficient quantities of ferrous iron in the application area, and the proximity of the injection area to the zone of high aqueous concentration of the target contaminant. Also, it was found that in situ application of H(2)O(2) could have a gas-sparging effect on the dissolved VOC in groundwater, requiring careful attention to the remedial system design.  相似文献   

12.
Degradation of malachite green in aqueous solution by Fenton process   总被引:1,自引:0,他引:1  
In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration=0.50mM and initial ferrous concentration=0.10mM for initial MG concentration of 20mg/L at 30 degrees C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.  相似文献   

13.
Iron oxides coated on Fe0 core–shell nanospheres (nIOCI) were synthesized through the reduction of ferrous sulfate aqueous solution by sodium borohydride at ambient atmosphere. The catalyst was highly effective for the degradation of humic acid (HA) in the presence of H2O2 and UVA at neutral pH. Under deoxygenated conditions in the dark, the generation of hydroxyl radicals in aqueous nIOCI dispersion verified its galvanic cell-like performance, which enhanced the interfacial electron transfer and led to its higher reactivity. By the total organic carbon, the absorbance of UV254, FTIR, the molecular weight distribution and the chemical fractional character analysis, the degradation process of HA was shown to proceed by the disappearance of aromaticity, the increase of hydrophilic fraction and aromatic ring openings into CO2 and small organic acid. The treated HA showed much lower reactivity toward chlorine and the disinfection byproduct (DBP) formation potential was also greatly reduced. Moreover, it was found that the DBP formation potential more depended on the structure of the intermediates of HA degradation than TOC removal.  相似文献   

14.
Degradation of MTBE, a common fuel oxygenate, was investigated using anodic Fenton treatment (AFT) and by comparison with classic Fenton treatment (CFT). The AFT system provided an ideal pH environment (2.5-3.5) for the Fenton reaction and utilized gradual delivery of ferrous iron and hydrogen peroxide, which was more efficient than batch CFT to degrade MTBE and its breakdown products. The optimized ratio of ferrous iron to hydrogen peroxide for AFT was determined to be 1:5 (in mmol). Depending on the initial concentration, MTBE was completely degraded by the optimized AFT in 4-8 min. The breakdown products found during the treatment of MTBE were acetone, t-butyl formate, t-butanol, methyl acetate, acetic acid, and formic acid, which were all completely degraded by the optimized AFT in 32 min. Based on the experimental results and other work reported in the literature, degradation mechanisms of MTBE and its breakdown products in AFT and CFT were proposed. Generally, reactions are initiated by H-abstraction by *OH, generating carbon-centered radicals which undergo various reactions including alpha/beta-scission within the radical, combination with oxygen, oxidation by ferric ion, and reduction by ferrous ion before generating the final oxidation products. Radical combination with oxygen (and the reactions thereafter) and radical oxidation by ferric ion are believed to be the most important pathways in the overall fate of the generated radicals, while radical reduction by ferrous ion is the least important. By elucidating the reaction kinetics and mechanisms of MTBE degradation in the anodic Fenton system, this study offers a potential remediation technique for treating MTBE-contaminated wastewater.  相似文献   

15.
The kinetics of 2,6-dimethylaniline degradation by Fenton process, electro-Fenton process and photoelectro-Fenton process was investigated. This study attempted to eliminate the potential interferences from intermediates by making a kinetics comparison of Fenton, electro-Fenton and photoelectro-Fenton methods through use initial rate techniques during the first 10 min of the reaction. Exactly how the initial concentration of 2,6-dimethylaniline, ferrous ions and hydrogen peroxide affects 2,6-dimethylaniline degradation was also examined. Experimental results indicate that the 2,6-dimethylaniline degradation in the photoelectro-Fenton process is superior to the ordinary Fenton and electro-Fenton processes. Additionally, for 100% removal of 1 mM 2,6-dimethylaniline, the supplementation of 1 mM of ferrous ion, 20 mM of hydrogen peroxide, current density at 15.89 A m−2 and 12 UVA lamps at pH 2 was necessary. The overall rate equations for 2,6-dimethylaniline degradation by Fenton, electro-Fenton and photoelectro-Fenton processes were proposed as well.  相似文献   

16.
Removal of COD from landfill leachate by electro-Fenton method   总被引:16,自引:0,他引:16  
The treatment of landfill leachate by electro-Fenton (E-Fenton) method was carried out in a batch electrolytic reactor. The effect of operating conditions such as reaction time, the distance between the electrodes, electrical current, H(2)O(2) to Fe(II) molar ratio, Fenton's reagent dosage and H(2)O(2) feeding mode on the efficacy of E-Fenton process was investigated. It is demonstrated that E-Fenton method can effectively degrade leachate organics. The process was very fast in the first 30 min and then slowed down till it was complete in 75 min. There exists an optimal distance range between the electrodes so that an over 7% higher chemical oxygen demand (COD) removal was achieved than the electrodes positioned beyond this range. COD removal efficiency increased with the increasing current, but further increase of current would reduce the removal efficiency. Organic removal increased as Fenton's reagent dosage increased at the fixed H(2)O(2) to Fe(II) molar ratio. COD removal was only 65% when hydrogen peroxide alone was applied to the electrolytic reactor, and the presence of ferrous ion greatly improved COD removal. COD removal efficiency increased with the increase of ferrous ion dosage at the fixed hydrogen peroxide dose and reached highest at the 0.038 mol/L of ferrous ion concentration. COD removal would decrease when ferrous ion concentration was higher than 0.038 mol/L. The stepwise or continuous addition of hydrogen peroxide was more effective than the addition of hydrogen peroxide in a single step. E-Fenton method showed the synergetic effect for COD removal as it achieved higher COD removal than the total COD removal by electrochemical method and Fenton's reagent.  相似文献   

17.
Application of hybrid gas/liquid electrical discharge reactors and a liquid phase direct electrical discharge reactor for degradation of phenol in the presence and absence of zeolites have been investigated. Hybrid gas/liquid electrical discharges involve simultaneous high voltage electrical discharges in water and in the gas phase above the water surface leading to the additional OH radicals in the liquid phase and ozone formation in the gas phase with subsequent dissolution into the liquid. The role of applied zeolites, namely NH4ZSM5, FeZSM5 and HY, were also studied. Phenol degradation and production of primary phenol by-products, catechol and hydroquinone, during the treatment were monitored by HPLC measurements. The highest phenol removal results, 89.4-93.6%, were achieved by electrical discharge in combination with FeZSM5 in all three configurations of corona reactors. These results indicate that the Fenton reaction has significant influence on overall phenol removal efficiency in the electrical discharge/FeZSM5 system due to the additional OH radical formation from hydrogen peroxide generated by the water phase discharge.  相似文献   

18.
TiO(2) photocatalyst (P-25) (50mgL(-1)) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO(2) were obviously increased. Pulsed high-voltage discharge process with TiO(2) had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10x10(-6) to 1.50x10(-6)Ms(-1), the ozone formation rate from 1.99x10(-8) to 2.35x10(-8)Ms(-1), respectively. In addition, this process had no influence on the photocatalytic properties of TiO(2). The introduction of TiO(2) photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.  相似文献   

19.
The degradation of olive mill wastewater (OMW) with hydroxyl radicals generated from zero-valent iron and hydrogen peroxide has been investigated by means of chemical oxygen demand (COD) and phenolic compounds analyses. The effects of the H2O2 dose, the pH and the organic matter concentration have been studied. The optimal experimental conditions were found to have continuous presence of iron metal, acid pH (2.0-4.0), and relatively concentrated hydrogen peroxide (9.5M). Coloration of OMW disappeared and phenolic compound decreased to 50% of initial concentration after 3h reaction time. The application of zero-valent Fe/H2O2 procedure permitted high removal efficiencies of pollutants from olive mill wastewater. The results show that zero-valent Fe/H2O2 could be considered as an effective alternative solution for the treatment of OMW or may be combined with a classical biological process to achieve high quality of effluent water.  相似文献   

20.
Simultaneously photocatalytic reduction of Cr(VI) and oxidation of bisphenol A (BPA) in aqueous solution in the presence of Fe(III)-OH complexes were investigated under a 250 W metal halide lamp (lambda>or=365 nm). Synergy effect of the simultaneous photocatalytic oxidation and reduction of both pollutants was achieved. The effects of initial pH value, initial concentration of BPA, Cr(VI) and Fe(III) were preliminarily investigated. The results showed that both photocatalytic reduction of Cr(VI) and degradation of BPA could occur simultaneously in the Fe(III)/Cr(VI)/BPA ternary system, and the rates of photocatalytic reduction of Cr(VI) and the oxidation of BPA were more rapid at a low pH range of 2.0-3.0. The increase of the initial concentration of Fe(III) was favorable to both photocatalytic reduction of Cr(VI) and oxidation of BPA. The reduction efficiency of Cr(VI) decreased with increasing initial concentrations of Cr(VI) and BPA, but the degradation efficiency of BPA was not changed obviously at different Cr(VI) concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号