首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to provide new data on the neotectonics and geodynamic properties of western Syria, studies of marine terraces have been carried out. The most attention was paid to the lower terraces in the range of 3–5 to 30–35 m above sea level, because they have more complete distributions along the shore. The lower terraces were examined along the coastal area from Tartus to Latakia, and along the carbonate cliff on Arwad Island. Seven 230Th/U dates for these terraces are in the range of 85–130 ka, suggesting the age interval of the last interglacial (MIS 5). New dates on the lower terraces provide a basis for stratigraphical and geomorphological interpretation as well as neotectonic reconstruction. According to the geomorphological data and lithological composition of those terraces, two main uplifted blocks can be established. One coincides with the Latakia block, and another corresponds to the western margin of the Banias volcanic plateau. These blocks are divided by a subsided structure corresponding to the Nahr el Kebir graben. The amplitude of neotectonic uplifting in the Latakia and Banias blocks reaches 15–20 m for the Late Pleistocene.  相似文献   

2.
An outcrop study of uplifted marine terraces provides information on the climate of past sea‐level maxima, supplementing existing palaeoclimatological archives. The western coast of the Akamas Peninsula shows several uplifted and intricately stacked Quaternary marine terraces. This study focuses on the sedimentology, petrography and sequence stratigraphy of the last three recent terraces and provides palaeoclimatological reconstruction and chronological framing. All three terraces display basically the same stratigraphic succession, which consists of regressive sequences ranging from bioturbated, storm‐influenced, subtidal high‐energy sands to subaerial exposure and aeolian deposition. Each sequence differs in petrography, reflecting contemporaneous climatic conditions. The first studied sequence (Marine Isotope Stage 9 or 11?) was deposited in a warm, arid climate, with oligotrophic water favouring ooid formation. The second sequence (Marine Isotope Stage 7) displays colder but humid conditions, with lower carbonate production and strong detrital input. The third sequence (Marine Isotope Stage 5e) records warm, humid conditions, with high carbonate production combined with significant detrital input. These littoral terraces offer high‐quality outcrops of glacioeustatic‐dominated, littoral sedimentology, together with evidence indicative of the regional climate during the late Pleistocene.  相似文献   

3.
Contractional structures (large anticlines and synclines, reverse faults and inverted centres of deposition) of assumed Late Cretaceous–Cenozoic age are common in Cretaceous–Tertiary basins of the northwestern European margin. The similarities in style, orientation and timing of these structures are striking. The present detailed analysis of one anticline (the Ormen Lange Dome) of the mid-Norwegian continental shelf indicates that the total contraction is moderate (less than 2–3%), and that the analysed anticline has been growing almost continuously since its initiation in Eocene till Present. Inversion in the Barents Sea started already in the Late Cretaceous. This episode is suggested to be related to far-field effects of active plate-margin processes, and transfer of stresses across the plate as a consequence of the sub Hercynian and Paleocene ‘Laramide' event of the Alpine Orogeny. The development of co-axial structures was facilitated by stress focusing along pre-existing, high-relief N–S- and NE–SW-trending fault complexes. Far-field plate tectonic stresses originating mainly from the Alpine Orogeny seem to have been the most important cause of contractional deformation on the NW European shelf. In addition, ridge push from the North Atlantic spreading may have contributed significantly, particularly during the Neogene.  相似文献   

4.
During the deformation of continental blocks, the magnitude of tectonic stress generally decreases with increasing distance from the margin of the block. However, the timing and kinematics of stress transmission from the margins to the interiors of continents are poorly resolved, even though this information is critical to our understanding of the dynamics of continental deformation. Here, we present a case study of Mesozoic deformation of the North China Craton (NCC). Field investigations of Mesozoic thrust faults and folds, granitic intrusions and dykes, combined with zircon SHRIMP and LA–ICP–MS dating and muscovite 40Ar/39Ar plateau ages, reveal the age of the NE–SW‐trending tectonic belts as ~180–155 Ma, where the deformation of the craton margin occurred 10–20 Ma earlier than that of the craton's interior. Although the kinematics of deformation are similar for the interior and the margin of the NCC, strain decreases with increasing distance from the margin. Notably, the bulk of the strain in the cratonic interior was focused in zones of pre‐existing weakness. Overall, we determined that the NCC deformed under conditions of uniaxial compression, a conclusion that is compatible with simple rheological models, and that the stress magnitude attained in the cratonic interior was much less than that along its margin.  相似文献   

5.
6.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

7.
Integrated seismological and structural geomorphological studies of the western Tunka system of basins in the southwestern Baikal rift show that the historic seismicity reflects the general Late Quaternary evolution trend of structures. Crustal deformation occurs mainly as transpression. Compression follows block boundaries and the northern mountainous borders of basins, whereas extension acts upon basin inner parts which remain in “tectonic shadow” during left-lateral strike-slip motions on W-E faults. Principal stresses inferred from earthquake mechanisms are most often a combination of horizontal NW extension and oblique or vertical compression in the basins and vertical extension with horizontal NE compression in the bordering ridges and along block boundaries. The general deformation style in the region is dominated by strike-slip faulting, and compression (shortening) dominates over extension.  相似文献   

8.
9.
10.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
青藏高原的隆升是新生代最壮观的地质事件,关于青藏高原隆升研究一直是地学界的研究焦点.河流阶地的发育记录了丰富的构造运动和气候变化的信息,近年来被广泛应用于构造运动和气候演变的研究,但前人研究的河流阶地基本分布在青藏高原的周缘,阶地的形成可能是气候与构造运动共同作用的结果.本文通过高分辨率卫星影像的解译,在青藏高原内部的西昆仑阿什库勒地区发现了多达七级的河流阶地.对该处河流阶地结构、沉积特征、几何特征的研究表明该阶地是典型的构造成因阶地.野外利用全站仪对河流阶地地貌形态进行了精细的测量,获得了各级阶地的拔河高度分别为4~5m(T1)、9~ 10m(T2)、16 ~ 18m(T3)、28~31m(T4)、45~48m(T5).通过宇宙成因核素10Be测年方法对各级阶地面的暴露年龄进行了测定,获得了各级阶地的形成时代分别为7.7±0.7ka(T1)、32.7±3.lka (T2)、53.6±2.5ka(T3)、115.7±23.2ka(T4)、166.8±10.4ka (T5)、19.5±8.5ka (T6).由此确定了晚第四纪166.8ka以来不同时期的河流下切速率总体介于0.2~0.35mm/yr,该速率代表了青藏高原西北部晚第四纪166.8ka以来的平均隆升速率.  相似文献   

12.
The Riverine Plain of south-eastern Australia is the result of prolonged Cenozoic fluvial activity. Single thread, anabranching and distributary channels and floodplains, and associated aeolian dunes, characterize the uppermost sequences. Based on detailed interpretations of Late Quaternary fluvial sedimentation and surficial stratigraphy for this 77 000-km2 basin, earlier ‘prior stream’ and ‘ancestral stream’ models of fluvial deposition, deduced from limited stratigraphic and chronological evidence, are replaced with aggradational palaeochannel and migrational palaeochannel models. Thermoluminescence dating reveals four distinct phases of palaeochannel activity between 105 and 12 ka; the first (Coleambally phase) late in Oxygen Isotope Stage 5, the second (Kerarbury phase) in Stage 3, the third (Gum Creek phase) before and the fourth (Yanco phase) after the Last Glacial Maximum (LGM) in Stage 2. The first three of these phases were characterized by mixed-load laterally migrating sinuous palaeochannels with occasional transitions to a straighter bedload-dominated mode, and vice versa. The first two phases concluded with a bedload-dominated episode resulting in aggradational palaeochannels on the surface of the Plain, and the third phase (prior to the LGM) did also in its downstream reaches. The phase following the LGM was characterized entirely by large mixed-load sinuous migrational palaeochannels. These exhibited no terminating bedload episode, because the onset of Holocene climates reduced the size of the flood peaks, greatly diminished the supply of bedload from the upper catchments and resulted in streams evolving to their present highly sinuous suspended load form. The result is a complex stratigraphic architecture consisting of vertically and laterally accreted units extending over hundreds of kilometres in the form of channel-sand stringers, sand sheets and derivative aeolian dunes partially or wholly encased in overbank fines.  相似文献   

13.
Late-glacial and postglacial pollen stratigraphy and radiocarbon chronology of a marine core from the continental slope and a core from the western Olympic Peninsula, ca. 110 km apart, are compared. Divisible into four pollen assemblage zones (L, P-1, P-2, and P-3), the cores exhibit a succession of correlative zonal prominences: grass-sedge (L), pine (P-1), alder (P-1-P-2 boundary), and hemlock (P-3). Volcanic ash of Mt. Mazama provenance is also correlative in zone P-2. Quantitative relationships of the pollen in the cores (relative and absolute numbers and pollen influx) are dissimilar, however, and are attributed to the influence of the Columbia River pollen load reaching the locale of the continental slope core compared with the local pollen rain influencing the Olympic Peninsula core site.  相似文献   

14.
Quaternary sediments cored on the continental slope off the Grand Banks and on nearby seamounts and abyssal hills have been correlated back to at least isotopic stage 6. using lithologic and hioslratigraphic markers and warm-cold cyclicity in microfossil assemblages. The sequence is dated using limited oxygen isotope and l4C data. The oldest continental slope cores penetrate to a glacial stade with an extrapolated age of 50. 0(H) B. P. The oldest scamount cores probably penetrate to isotopic stage 13. Watcrmass distribution over the area results from interaction of the Labrador Current with locally generated shelf water, and to a lesser extent, the Gulf Stream. Planktic foraminiferal assemblages and sedimentological evidence suggest that arctic Labrador Current core water extends onto the eastern Grand Banks only during full interglacials. During intcrstadials, this arctic core water is absent, probably because its source-was blocked by ice. Cold water during stadials probably results mostly from local cooling on the continental shelf.  相似文献   

15.
受控古太平洋板块俯冲及后撤作用,华南晚中生代经历了强烈大陆再造,并伴随幕式岩浆活动,是研究活动大陆边缘构造- 岩浆作用、壳幔过程和板块俯冲动力学的天然实验室。本文系统综述了近年来发表的构造变形、岩浆作用和深部结构等多学科成果,以构造解析为主线,深- 浅结合,在华南识别出与古太平洋板块俯冲相关的中晚侏罗世弧背缩短和白垩纪弧后伸展系统,厘定了二者的时空格架和叠加改造关系。弧背缩短系统以扬子中部的隔档- 隔槽式褶皱、深部多层滑脱和双重逆冲推覆构造为特征,具SE向NW的逆冲扩展变形规律,与古太平洋板块的前进式俯冲有关。白垩纪主体以大陆伸展为主,经历了伸展和挤压变形交替,并伴随着岩浆活动的爆发、迁移和停止,其可能与板片俯冲动力学变化有关。在此基础上,我们分析了白垩纪岩石圈长距离伸展的深部过程及浅表响应,提出了岩石圈随深度变化的分层差异伸展模式。自下而上,从岩石圈地幔到上地壳,应变近一致地表现为(W)NW- (E)SE伸展,反映了垂向变形一致性。可能的垂向应力传播过程:板片后撤诱发长距离地幔流,其在岩石圈底部形成剪切牵引应力,促进下岩石圈地幔被动拉伸;上岩石圈地幔局部发育强应变剪切带,作为应力传播构造,其可有效加强壳- 幔间剪切,促进下地壳韧性拉伸,将下地壳和岩石圈地幔的变形关联。我们认为岩石圈伸展、板片后撤和地幔流形成了三位一体的动力学耦合系统,将华南岩石圈长距离伸展的驱动力归结为:① 古太平洋俯冲带海沟后撤和板片回卷诱发的远程效应,和② 地幔流在岩石圈底部施加的剪切牵引应力。  相似文献   

16.
Well-preserved Quaternary staircased marine terraces appear on Ras Leona limestone relief. This is a peculiar sector of the Betic-Rif Cordillera, lying in the four-way junction between the Atlantic and the Mediterranean, and Europe and Africa. The age and altitude correlation of the Ras Leona terraces with travertine-covered lateral equivalent terraces fashioned in the neighbouring Beni Younech area, and comparison with those along the Moroccan Atlantic coasts, would suggest that the Ras Leona terraces were mainly formed by eustatic factors. The importance of the eustasy is supported by further comparisons with Spanish and Moroccan Mediterranean terraces and with different marine terraces developed on passive-margin coasts around the world. A tectonic event occurred mainly during the period between the formation of the Maarifian and the Ouljian terraces (i.e., between 370 and 150 ka). The moderate Quaternary tectonic uplift deduced from the marine terraces and its comparison with uplifted marine terraces developed in active subduction setting disagrees with the model of an active eastwards subduction below the Gibraltar tectonic arc.  相似文献   

17.
李理  赵利  钟大赉 《地质科学》2013,48(2):406-418
新生代印欧大陆碰撞引发了中国西部前缘大规模多阶段地壳挤压缩短、构造变形与隆升及岩浆事件,在中国东部,新生代山脉的抬升、盆地的伸展、沉降,以及郯庐断裂带新生代的活动与青藏高原的隆升具有准同时性,伸展盆地—伸展山脉之间存在耦合关系。这种对应关系呈"幕式"变化,主要表现在印欧大陆碰撞岩石圈增厚、构造变形和抬升的高峰时期,对应盆地岩石圈伸展、减薄、快速构造沉降以及郯庐断裂带活动等阶段,当构造转入相对稳定(松弛)时期,表现为高原剥蚀夷平、岩浆活动频繁以及盆地构造沉降速率减缓等阶段。从全球板块构造的角度来看,中国西部、东部新生代挤压、伸展和走滑活动属同一动力学体系条件下的耦合关系,驱动力可能是两大板块碰撞、深部地幔脉动上涌以及新生代太平洋板块与欧亚板块俯冲和速率变化的共同作用。  相似文献   

18.
Three emergent marine terraces are prominent between Playa El Marron and Arroyo El Salinito and comprise the most extensive Pleistocene planation surfaces in central Baja California, Mexico. The deposits of the lowest terrace, the Tomatal, are 120,000 ± 20,000 yr old (Sangamonian?) while the absolute ages of the two higher and older terraces, the Andrés and Aeropuerto, are unknown. The Tomatal terrace is particularly well developed and comprises degraded sea cliffs, paleodunes, and lagoonal sequences. Shingle paleobeach ridges also occur locally and reflect shore progradation and tombolo formation. The Tomatal shoreline is nearly horizontal at 7 ± 1 m above present mean sea level, whereas the older Aeropuerto terrace has been tilted so that it decreases in elevation toward the southeast. Nonetheless, coastal tilting is not nearly as great as at many other localities in California and Baja California. This is despite the fact that the entire Baja California peninsula has been assumed to be tectonically unstable during the Pleistocene, primarily because of the forces generated by plate motion.  相似文献   

19.
The Murray Basin is a low-lying but extensive intracratonic depocentre in southeastern Australia, preserving an extraordinary record of Late Neogene sedimentation. New stratigraphic and sedimentologic data allow the long-term evolution of the basin to be re-evaluated and suggest a significant role for: (1) tectonism in controlling basin evolution, and (2) progressive and step-wise climatic change beginning in the early Pleistocene. Tectonic change is associated with regional uplift, occurring at approximately the same rate from the early Pliocene until the present day, and possibly associated with changing mantle circulation patterns or plate boundary processes. This uplift led to the defeat and re-routing of the Murray River, Australia’s major continental drainage system. Key to our interpretation is recognition of timing relationships between four prominent palaeogeographic features – the Loxton-Parilla Sands strandplain, the Gambier coastal plain, palaeo megalake Bungunnia and the Kanawinka Escarpment. Geomorphic and stratigraphic evidence suggest that during the Early Pliocene the ancestral Murray River was located in western Victoria, flowing south along the Douglas Depression. Relatively small amounts of regional uplift (<200 m) defeated this drainage system, dramatically changing the palaeogeography of southeastern Australia and forming Plio-Pleistocene megalake Bungunnia. At its maximum extent Lake Bungunnia covered more than 50,000 km2, making it one of the largest known palaeo- or modern-lakes in an intracontinental setting. Magnetostratigraphic constraints suggest lake formation c. 2.4 Ma. The formation of Lake Bungunnia influenced the Pliocene coastal dynamics, depriving the coastline of a sediment source and changing the coastal system from a prograding strandline system to an erosional one. Erosion during this period formed the Kanawinka Escarpment, a palaeo sea-cliff and one of the most prominent and laterally extensive geomorphic features in southeastern Australia. Marine sediments c. 800 ka to c. 1.16 Ma represent the time of re-establishment of depositional coastal dynamics and of a permanent outlet for the Murray River. This age range is consistent with our best estimate of the age of the youngest Lake Bungunnia sediments and points towards an early Pleistocene age for the demise of the lake system. The youngest Lake Bungunnia sediment, present on a number of distinct terraces, suggests that progressive, step-wise climatic change played a role in the demise of the lake. However, in order for the ancestral Murray River system to have been able to breach the pre-existing tectonic dam, it is likely that tectonic change and/or temporarily enhanced discharge was also significant. This scenario indicates that the modern Murray River has only been in existence for at most 700 ka.  相似文献   

20.
The Bogong High Plains of eastern Victoria occur as plateau remnants in a highly dissected region of the Australian Alps. Results from apatite fission track analyses indicate that the Bogong region experienced multiple episodes of rapid low‐temperature cooling, most of which can be tentatively linked to a tectonic cause. Early episodes of cooling occurred during the Middle to Late Devonian (ca 400–370 Ma) and Late Carboniferous to Early Permian (ca 310–290 Ma), presumably during different stages of deformation associated with the development of the Lachlan Fold Belt and glacial erosion. Rapid cooling occurred during the Late Permian to Early Triassic (ca 260–240 Ma), presumably in response to the Hunter‐Bowen orogenic event along the eastern Australian continental margin. Since the Triassic, two major episodes of fault reactivation have further displaced fission track ages between sample groups on different structural blocks. The first episode occurred during the middle Cretaceous at ca 110–90 Ma, probably in response to initial extension and denudation along the eastern Australian passive margin prior to breakup. Subsequently during the Early to mid‐Tertiary at ca 65–45 Ma, large‐scale fault reactivation occurred along the Kiewa Fault, possibly in response to changes in intraplate stresses which occurred during the middle Tertiary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号