首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the present investigation, fired pellets were made by mixing hematite iron ore fines of ?100, ?16 + 18, and ?8 + 10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850°C to 1000°C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000°C, and it was more intense in the first 30 min. The values of activation energy, calculated from integral and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of ?100 mesh size) in coals were found to be in the range 131–148 and 130–181 kJ mol?1 (for α = 0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of ?100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.  相似文献   

2.
Studies on the chemical and physical properties, and the reduction behavior (in coal) of hematite iron ores procured from 10 different mines of Orissa, were undertaken to provide information for the iron and steel industries (sponge iron plants in particular). The majority of the iron ores were found to have high iron and low alumina and silica contents. All these iron ores were free from the deleterious elements (S, P, As, Pb, alkalies, etc.). The results indicated lower values of shatter and abrasion indices, and higher values of tumbler index in all the iron ore lumps except Serazuddin (previous) and Khanda Bandha OMC Ltd. For all the fired iron ore pellets, the degree of reduction in coal was more intense in the first 30 min, after which it became small. Slow heating led to higher degree of reduction in fired pellets than rapid heating. All the iron ores exhibited more than a 90% reduction in their fired pellets in 2-h time interval at a temperature of 900°C. Iron ore lumps showed a lower degree of reduction than the corresponding fired pellets.  相似文献   

3.
In the present investigation, the reduction and swelling behaviors (in low grade coal) of fired iron ore pellets, prepared by blending hematite iron ore fines of ?100, ?18 + 25, and ?10 + 16 mesh sizes in different proportions, have been studied in the temperature range of 850–1000°C with an objective to promote massive utilization of fines in sponge ironmaking. An increase in temperature up to the range studied (850–1000°C) substantially enhanced the reduction rate and the rate was found to be highest in the first 15–30 min at all these temperatures. All the fired pellets, made by mixing iron ore particles of ± 100 mesh size, have shown approximately the same reduction rates and slightly higher swelling indices than those made from fines of ?100 mesh size only. In all the fired pellets reduced at temperatures of 850°C and 900°C, the results indicated an increase in the extent of swelling with reduction time. Reduction of fired pellets at temperatures of 950°C and 1000°C exhibited shrinkage in their reduced products, and the extent of this shrinkage increased with increase in exposure time.  相似文献   

4.
Studies on the reduction and swelling behaviors of fired pellets, made by mixing hematite iron ore fines of ?100, ?18 + 25, and ?10 + 16 mesh sizes in different proportions, were carried out with low-grade coal in the temperature range of 850–1000°C with an aim to promote the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000°C and it was more intense in the first 15-min soak time. Relatively higher reduction rates and swellings/shrinkage were observed in the pellets made by the addition of larger size (+100 mesh) particles in the matrix of ?100 mesh size fines. In general, highest swelling was observed in the fired pellets at a reduction temperature of 850°C, followed by a decrease at 900°C. At both these temperatures, the percentage of swelling increased with reduction time up to the range studied (120 min). The fired pellets reduced at temperatures of 950°C and 1000°C, showed shrinkage, and the extent of this shrinkage increased with increase in exposure time at 950°C. The percentage swelling/shrinkage in the fired pellets was found to be related to their crushing strengths and porosities.  相似文献   

5.
With the objective of phosphorus enrichment in the metallic iron during coal based reduction, high phosphorus oolitic hematite ore was reduced in the presence of coal with the coal/ore molar ratio (C/O, the molar ratio of fixed carbon in coal to oxygen in iron oxides of ore) varying from 1·0 to 2·5 at temperatures ranging from 1473 to 1548 K. The metallic iron was beneficiated from reduction products by magnetic separation. The results showed that the enrichment of phosphorus in the metallic iron improved with increasing temperature and C/O molar ratio. The phosphorus content and the phosphorus enrichment could reach 2·5 and 77·5%, respectively, with a C/O molar ratio of 2·5 at 1548 K and after 60 min reduction. The high phosphorus-containing metallic iron so obtained could then be converted to steel and high phosphorus steelmaking slag that can be used as a phosphate fertiliser. Kinetic analysis demonstrated that the process of phosphorus enrichment in the metallic iron could be divided into two stages, early and late, described by phase boundary controlled reaction and diffusion controlled, respectively. At the early stage, the apparent activation energy and pre-exponential factor of phosphorus enrichment decreased from 182·12 kJ mol?1 and 9509·06 min?1 to 132·60 kJ mol?1 and 395·44 min?1, respectively, when the C/O molar ratio was increased from 1·0 to 2·5. At the later stage, the apparent activation energy and pre-exponential factor were 245·87 kJ mol?1 and 172?818·99 min?1 at a C/O molar ratio of 1·0, respectively, whilst those were reduced to 210·73 kJ mol?1 and 13?930·28 min?1 at a C/O molar ratio of 2·5.  相似文献   

6.
In the present investigation, boric acid was used in the ball formation of iron ore fines to improve the compressive strength (CS) of fired pellet. Boric acid was used in combination with carboxymethyl cellulose (CMC) and saw dust and the pellets were fired at different firing temperatures from 1000 to 1300 °C. Box–Behnken statistical design was followed for analyzing the CS at different levels of boric acid, CMC and firing temperature. Results were discussed using 2D surface plots. Response function predictions determined by the regression analysis showed coefficient of correlation (R2) for CS as 0.96. Highest CS of 450 kg/pellet was obtained with addition of 1% boric acid, 0.1% CMC and a temperature of 1300 °C within the range of parameters under investigation.  相似文献   

7.
Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s?1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of ~?90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent ‘n’ of the base metal and weldment was ~?0.519. Activation energy ‘Q’ of base metal and EB weldments were 420 to 535 kJ mol?1 determined through isothermal tensile tests and 625 to 662 kJ mol?1 through jump-temperature tensile tests. Strain rate sensitivity ‘m’ was low (<?0.119) for the base metal and (<?0.164) for the weldment. The δ phase was revealed in specimens annealed at 700 °C, whereas, twins and fully recrystallized grains were observed in specimens annealed at 1025 °C. Low-angle misorientation and strain localization in the welds and the HAZ during tensile testing at higher temperature and strain rates indicates subgrain formation and recrystallization. Higher elongation in the weldment (at Test temperature >?775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.  相似文献   

8.
The decomposition kinetics of niobium ore in the NaOH system was studied experimentally. The results show that the reaction products are sodium metaniobate and sodium niobate formed by the reaction of pyrochlore with sodium hydroxide under roasting. The effects of temperature, particle size, and mass ratio of alkali-to-ore were studied. The conversion rate of niobium exceeded 99 pct after 20 minutes at 923 K (650 °C) with a mass ratio of alkali-to-ore 1.2:1 and with initial particle size 75 to 106 μm. The kinetic study indicates that the shrinking core model is applicable and the process is controlled by a chemical reaction. The activation energy was calculated to be 78.82 kJ mol–1.  相似文献   

9.
Isothermal reduction of haematite carbon mixtures was investigated at temperatures 750–1100°C under inert atmosphere. Mass loss curves proved the stepwise reduction of haematite to metallic iron. The non-linear feature of haematite to magnetite reduction kinetics was observed and an activation energy of 209?kJ?mol?1 was calculated. Irrespective of carbon-bearing material type, reduction rate of magnetite was linear. Activation energy values were calculated to be 293–418?kJ?mol?1. Significant increase in the reduction kinetics in the last step (Wustite reduction) was observed and explained by the catalytic effect of freshly formed metallic iron. During the initial stages of wustite reduction, the activation energy values were calculated to be in the range of 251–335?kJ?mol?1 for all carbon-bearing materials.  相似文献   

10.
Additives can give rise to obvious, step-wise changes both in the oxidation process and in the sintering process. Therefore, the oxidation and sintering characteristics measured in dried pellets prepared from pure magnetite concentrates can not be representative for those characteristics in dried pellets containing additives. The oxidation and sintering characteristics of magnetite iron ore pellets balled with a novel complex binder (namely MHA) were mainly investigated by batch isothermal oxidation measurements in this research. Combined results reveal that the thermal decomposition of MHA binder influences the oxidation and sintering processes of dried pellets. Oxidation rate of pellets increases obviously with increasing the oxidation temperature in the range from 800°C to 1000°C. And the remaining FeO content declines gradually when separately heated for 10 min at low temperature (<1000°C). However, the oxidation rate of pellets decreases distinctly when oxidation temperature is higher than 1000°C. In addition, when oxidation temperature increases from 1000°C to 1250°C, the FeO content of pellets goes up obviously, particularly at 1250°C. The FeO content in the core of sintered pellets heated at 1250°C can even reach 29.68%. SEM spectrum analysis demonstrate that some iron appears in forms of wustite in sintered pellets, which indicates that the reduction reaction of iron oxide occurs during the high temperature sintering process. This is explained by the occurrence of reducing atmospheres because of the pyrogenic decomposition of MHA binder.  相似文献   

11.
Haematite ore pellets require very high induration temperature (>1573?K) while, magnetite ore pellets require much lower temperature due to the oxidation of magnetite during induration. Mixing of some magnetite in haematite ore can improve the sintering property of pellets during induration. Mill scale is a waste material of steel plant which contains mainly FeO and Fe3O4. It can also be blended in haematite ore pellet mix which can enhance diffusion bonding and recrystallisation bonding and facilitate sintering at the lower temperature like magnetite ore. The extent of improvement in sintering property, sintering mechanism and its kinetics in the presence of mill scale is very imperative to study. In current study, the sintering characteristics of acidic iron ore pellet with 15% mill scale and without mill scale has been studied separately through microstructure observation, apparent porosity measurement and volume change. The volume changes due to heating at varying temperature and time has been measured by mercury displacement method and the data has been exploited for sintering kinetics study, wherein, extent of sintering α has a power relation with time. Several kinetics parameters such as time exponent (n), rate constant (k) and activation energies have been estimated for above two pellets and compared. While acidic pellet without mill scale requires 385?k?cal?mol?1, acidic pellet with 15% mill scale requires only 310?k?cal?mol?1 activation energy.  相似文献   

12.
In this study an attempt has been made to increase Mn/Fe ratio in dump Manganese ore fines so that it can be used for the production of ferromanganese. For this purpose non-coking coal was used as reductant and dilute hydrochloric acid as leaching medium for the roasted ore. The effects of acid strength, leaching time, leaching temperature, stirring speed, ore particle size and pulp density have been studied. The dissolution of iron follows the kinetic model 1 ? 2x/3 ? (1 ? x)2/3 = kdt. Thus product layer diffusion is the controlling mechanism and the activation energy has been determined to be 26.23 kJ/mol at 40–95 °C. Another set of experiments have been conducted according to 23 full factorial design, and regression equation for iron dissolution has been developed.  相似文献   

13.
A linear correlation between free energy and enthalpy for crystalline and soluble oxocompounds based in the Sverjensky–Molling equation is used to calculate the Gibbs free energies of formation of MnWO4 (?1172.48 ± 12.76 kJ mol?1), H2WO4 (?1006.91 ± 10.36 kJ mol?1), and Na2WO4 (?1455.39 ± 12.81 kJ mol?1). Using these data with the known thermodynamic data, the equilibrium constants for reactions of leaching of scheelite and wolframite in acidic and basic media were determined. The results show that the acid route based in relatively cheap inorganic acids is desirable for scheelite digestion, despite the diffusion problems concerned with tungstic acid developed on the solid particles. Meanwhile, wolframite may be operated under favorable thermodynamics conditions by alkaline and acid processes.  相似文献   

14.
15.
Studies on the chemical and physical properties (proximate analysis, sulphur content, reactivity, iron ore reduction potential, caking index, and ash fusion temperatures) of coals, procured from 16 different mines in Orissa, India, were undertaken for their judicial selection in Indian sponge iron plants. These coals were found to have low sulphur (range of 0.40–0.66%) and a moderate-to-high ash (range: 22–53%) contents. The results indicated that there were no caking characteristics in any of the coals except Basundhara. The majority of the studied coal ashes were found to have higher fusion temperatures (ST: 1349–1547°C; HT: 1500–1663°C; and FT: 1510–1701°C). An increase in the fixed carbon content in the coal char, in general, led to a decrease in its reactivity toward CO2. The majority of the chars exhibited significantly higher reactivities (>4.0 cc of CO/g·sec). Further reduction studies in coal chars at 900°C indicated an increase in the degree of reduction of fired hematite iron ore pellets with an increase of char reactivity and reduction time. The authors recommend using the majority of the studied coals as such and some of them (Lakhanpur, Samleshwari, Orient OC–4, and Dhera coals) after blending or beneficiation.  相似文献   

16.
The high vapor pressure of Mg in comparison with Cu and Si enables the use of thermogravimetric Knudsen effusion method (KEM) to determine the thermodynamic properties of binary Cu-Mg, Mg-Si, and ternary Cu-Mg-Si alloys. In the current study, the weight loss of solid Mg with time has been determined at different constant temperatures between 705 K and 788 K (432 °C and 515 °C) by using KEM, and from these diagrams, the sublimation rate of Mg was calculated. By introducing the sublimation rates into the equation derived from the kinetic gas theory, the enthalpy change of sublimation reaction of Mg at the experimental temperatures was calculated to be 147.5 ± 6.5 kJ mol?1, which is close to the 143.8 ± 0.5 kJ mol?1 calculated using the thermodynamic data available in the literature. Similar procedure was also applied to the binary Cu-Mg, Mg-Si, and ternary Cu-Mg-Si alloys where the activities of Mg with respect to the Mg wt pct with W Cu:W Si = 20:80 were calculated. The diversion points in the activity–composition diagrams gave the phase boundary compositions in the phase diagrams. The phase boundary compositions of Mg in the alloys determined using KEM were in good agreement with the known binary and the constructed ternary phase diagram using FactSage thermochemical software and databases.  相似文献   

17.
《钢铁冶炼》2013,40(5):334-340
Abstract

The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5·6–6·5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423–1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol–1 for coke breeze containing pellets, and 230 kJ mol–1 for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.  相似文献   

18.
《钢铁冶炼》2013,40(6):443-451
Abstract

Iron nuggets can be obtained from ore–coal composite pellets by high temperature reduction. Alumina in the ore plays a vital role in slag–metal separation during nugget formation, as it increases the liquidus temperature of the slag. In this study, the effect of carbon content, reduction temperature and lime addition on slag–metal separation and nugget formation of varying alumina iron ore fines were studied by means of thermodynamic modelling. The results were validated by conducting experiments using iron ore fines with alumina levels ranging from 1·85 to 6·15%. Results showed that increase in reduction temperature enhances slag metal separation, whereas increasing alumina and carbon content beyond the optimum level adversely affects separation. Carbon below the required amount decreases the metal recovery, and carbon above the required amount reduces the silica and alters the slag chemistry. Optimum conditions were established to produce iron nuggets with complete slag–metal separation using iron ore–coal composite pellets made from high alumina iron ore fines. These were reduction temperature of 1400°C, reduction time minimum of 15 min, carbon input of 80% of theoretical requirement and CaO input of 2·3, 3·0 and 4·2 wt-% for 1·85, 4·0 and 6·15 wt-% alumina ores respectively.  相似文献   

19.
The kinetics of the smelting reduction of iron ore by a graphite crucible and carbon-saturated molten iron was investigated between 1400 °C and 1550 °C, and its reaction phenomena were continuously observed in situ by X-ray fluoroscopy. In the smelting reduction by graphite, it was shown from the observation results that the smelting reduction reaction proceeded by the following two stages: an initial quiet reduction without foaming (stage I) and a following highly active reduction with severe foaming (stage II). At 1500 °C, by the graphite crucible, the reduction rate of iron ore was found to be 8.88×10−5 mol/cm2 · s, and by the molten iron, 8.25×10−5 mol/cm2·s. The activation energies for the reduction by the graphite crucible and the molten iron were 24.1 and 22.9 kcal/mol, respectively. Based on the results of kinetic research and X-ray fluoroscopic observations, it can be concluded that these two types of smelting reduction reactions of iron ore by the graphite crucible and by the molten iron are essentially the same.  相似文献   

20.
The Abrasion Index (AI) describes fines generation from iron ore pellets, and is one of the most common indicators of pellet quality. In a typical pellet plant, dust is generated during the process and then captured. Can the dust be measured and used to predict AI? In this paper, the feasibility of using airborne dust measurements as an indicator of AI is investigated through laboratory tests and using data from a pellet plant. Bentonite clay, polyacrylamide and pregelled cornstarch contents, and induration temperature were adjusted to control the abrasion resistance of laboratory iron ore pellets. AI were observed to range from approximately 1% to 12%. Size distributions of the abrasion progeny were measured and used to estimate quantities of PM10 (particulate matter with aerodynamic diameter less than 10 µm) produced during abrasion. A very good correlation between AI and PM10 (R2 = 0.90) was observed using the laboratory pellets. Similarly, a correlation was observed between AI and PM measured in the screening chimney at a straight-grate pelletization plant in Brazil, with an R2 value of 0.65. Thus, the laboratory and industry data suggest that measuring dust generation from fired pellets may be an effective on-line measurement of pellet quality. The data also showed that particulate emissions from pelletization plants may be directly affected by AI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号